Андрей Смирнов
Время чтения: ~18 мин.
Просмотров: 0

Стрелочный вольтметр с растянутой шкалой 10…15 в

Реконструкция объектов строительства: виды, этапы и порядок проведения

Как правильно подключить вольтметр

Тот, кто не знает, но хочет проверить напряжение на каком-то участке электрической сети, должен задаться вопросом – как подключить вольтметр? Это на самом деле серьезный вопрос, в ответе которого лежит простое требование – подключение вольтметра необходимо проводить только параллельно нагрузке. Если будет произведено последовательное подключение, то сам прибор просто выйдет из строя, и вас может ударить током.

Все дело в том, что при таком соединении уменьшается сила тока, действующая на сам измерительный прибор. При этом сопротивлении его не меняется, то есть, остается большим. Кстати, никогда не путайте вольтметр с амперметром. Последний подключается к цепи последовательно, чтобы снизить показатель сопротивления до минимума.

И последний вопрос темы – как пользоваться вольтметром, изготовленным самостоятельно. Итак, в вашем приборе два щупа. Один подключается к нулевому контуру, второй к фазе. Так же можно проверить напряжение через розетку, предварительно определив, к какому гнезду запитан ноль, а к какому фаза. Или соединяете параллельно прибор к измеряемому участку. Стрелка измерительного блока покажет величину напряжения в сети. Вот так пользуются этим самодельным измерительным прибором.

ВЧ вольтметр с линейной шкалой

Рейтинг:  5 / 5

Подробности
Категория: Вольтметры
Опубликовано: 18.03.2017 02:05
Просмотров: 8992

Роберт АКОПОВ (UN7RX), г. Жезказган Карагандинской обл., Казахстан Одним из необходимых приборов в арсенале радиолюбителя-коротковолновика, безусловно, является высокочастотный вольтметр. В отличие от НЧ мультиметра или, например, компактного ЖК осциллографа, такой прибор в продаже встречается редко, да и стоимость нового фирменного довольно высока. Посему, когда назрела необходимость в таком приборе, он был построен, причем со стрелочным миллиамперметром в качестве индикатора, который, в отличие от цифрового, позволяет легко и наглядно оценивать изменения показаний количественно, а не путем сравнения результатов.

Это особенно важно при налаживании устройств, где амплитуда измеряемого сигнала постоянно меняется. В то же время точность измерения прибора при использовании определенной схемотехники получается вполне приемлемой

ВЧ вольтметры можно разделить на три группы. Первые построены на базе широкополосного усилителя с включением диодного выпрямителя в цепь отрицательной ОС . Усилитель обеспечивает работу выпрямительного элемента на линейном участке ВАХ. В приборах второй группы применяют простейший детектор с высокоомным усилителем постоянного тока (УПТ). Шкала такого ВЧ вольтметра на нижних пределах измерений нелинейна, что требует применения специальных градуировочных таблиц либо индивидуальной калибровки прибора . Попытка в какой-то мере линеаризировать шкалу и сдвинуть порог чувствительности вниз путем пропускания небольшого тока через диод проблему не решает. До начала линейного участка ВАХ эти вольтметры являются, по сути, индикаторами . Тем не менее такие приборы, как в виде законченных конструкций, так и приставок к цифровым мультиметрам, весьма популярны, о чем свидетельствуют многочисленные публикации в журналах и сети Интернет. Третья группа приборов использует линеаризацию шкалы, когда линеаризирующий элемент включен в цепь ОС УПТ для обеспечения необходимого изменения усиления в зависимости от амплитуды входного сигнала. Подобные решения нередко используют в узлах профессиональной аппаратуры, например, в широкополосных высоколинейных измерительных усилителях с АРУ, либо узлах АРУ широкополосных ВЧ генераторов. Именно на таком принципе построен описываемый прибор, схема которого (рис. 1) с незначительными изменениями заимствована из .    При всей очевидной простоте ВЧ вольтметр имеет очень неплохие параметры и, естественно, линейную шкалу, избавляющую от проблем с градуировкой. Диапазон измеряемого напряжения — от 10 мВ до 20 В. Рабочая частотная полоса — 100 Гц…75 МГц. Входное сопротивление — не менее 1 МОм при входной емкости не более нескольких пикофарад, которая определяется конструкцией детекторной головки. Погрешность измерений — не хуже 5 %. Линеаризирующий узел выполнен на микросхеме DA1. Диод VD2 в цепи отрицательной ОС способствует повышению усиления этой ступени УПТ при малых значениях входного напряжения. Снижение выходного напряжения детектора компенсируется, в результате показания прибора приобретают линейную зависимость. Конденсаторы С4, С5 предотвращают самовозбуждение УПТ и уменьшают возможные наводки. Переменный резистор R10 служит для установки стрелки измерительного прибора РА1 на нулевую отметку шкалы перед проведением измерений. При этом вход детекторной головки должен быть замкнут. Источник питания прибора особенностей не имеет. Он выполнен на двух стабилизаторах (рис. 2) и обеспечивает двуполярное напряжение 2×12 В для питания операционных усилителей.   Все детали прибора, за исключением деталей измерительного щупа, смонтированы на двух печатных платах из односторонне фольгированного стеклотекстолита.  На рис. 3 представлен чертеж платы УПТ,    а на рис. 4 — платы источника питания.    Конструкция прибора показана на фотографиях — рис. 5 и 6.      Размеры его корпуса — 190x100x140 мм. Миллиамперметр РА1 — М42100, с током полного отклонения стрелки 1 мА. Переключатель SA1 — ПГЗ-11ПЗН. Переменный резистор R10 — СП2-2, все подстроечные резисторы — импортные многооборотные, например PV34F Резисторы нестандартных номиналов R2, R5 и R11 составлены из двух, включенных последовательно. Операционные усилители можно заменить другими, с высоким входным сопротивлением и желательно с внутренней коррекцией (чтобы не усложнять схему). Все постоянные конденсаторы — керамические. Конденсатор СЗ смонтирован непосредственно на входном разъеме XW1.

Оставлять комментарии могут только зарегистрированные пользователи

↑ Программа

Программа написана на языке СИ (mikroC PRO for PIC) и снабжена комментариями. В программе применено прямое измерение переменного напряжения микроконтроллером, что позволило упростить схему и повысить точность измерения малых напряжений. Микропроцессор применён PIC16F676. Тактовая частота внутреннего генератора 4 МГц.

Работа программы: в течение некоторого отрезка времени производится многократное прямое измерение напряжения без привязки к фазе и при этом определяются минимальное и максимальное значения напряжений. Разность их значений будет равна размаху измеряемого напряжения, которое и выводится на индикатор.

Вольтметр с растянутой шкалой. Расчёт диапазона измерений

Такой вольтметр в отличие от обычного позволяет с большой точностью измерить напряжение в некотором заданном диапазоне. Например для контроля напряжения автомобильного аккумулятора очень удобен будет вольтметр со шкалой от 10 до 15 вольт, так как он дает возможность отслеживать даже незначительные изменения напряжения в этом диапазоне.

Поскольку такой значок отсутствует на клавиатуре, я стану обозначать его как ^U.

Для того, чтобы сделать шкалу «растянутой», в измерительную схему достаточно добавить пороговый элемент, например стабилитрон с необходимым значением напряжения стабилизации. А если добавить ещё один такой стабилитрон, включённый встречно, то это значительно уменьшит суммарную температурную нестабильность всей схемы, которая представлена на рисунке ниже:

Напряжение на входе схемы распределяется между резистором R и стабилитронами VD1 VD2. Если падение напряжения на стабилитронах неизменно, то на резисторе оно будет равно разности между входным значением и напряжением стабилизации стабилитронов Uстаб. И тогда прибор покажет не значение входного напряжения, а только его изменение в пределах от 0 до 2^U.

Сопротивление резистора R можно рассчитать обычным способом для схем стабилизации:

R = 2^U / Iстаб.max, где 2^U — предел измерения прибора, Iстаб — ток стабилитронов.

На практике, для контроля напряжения двенадцативольтовой кислотной аккумуляторной батареи можно использовать два стабилитрона с напряжением стабилизации каждого по 10 вольт, резистор R сопротивлением 120 Ом и вольтметр с пределом измерения 3 вольта. Шкалу вольтметра в этом случае следует проградуировать в значениях от 10 до 13 вольт.

Использование киловольтметра.

1. Щуп киловольтметра в собранном виде; 2. Провода для подключения заземления и мультиметра; 3. Два варианта наконечников; 4. Пример подключения киловольтметра к аноду кинескопа с использованием сменного наконечника в виде крючка.

При использовании прибора следует соблюдать меры техники безопасности.

Подключение и отключение киловольтметра следует производить при обесточенной аппаратуре, после снятия заряда с высоковольтных токоведущих частей.

При подключении киловольтметра к измеряемым цепям, заземление следует подключать в первую очередь!

При отсоединении щупа от измеряемых цепей, заземление следует отключать в последнюю очередь!

При подключении киловольтметра к аноду кинескопа следует одну клемму заземления соединить с графитовым покрытием кинескопа, а другую с общим проводом шасси телевизора.

info — oldoctober.com/ru/kilovolt

Как нарисовать шкалу на стрелочном индикаторе

Здравствуйте уважаемые читатели. В этой статье хочу рассказать о том, как нарисовать нужную нам шкалу для своих измерительных приборов.

См. Фото 1

Меряем осторожно, не повредив поворотной системы измерительной головки, и запоминаем его величину. Если у вас, как и у меня, на пластинке основной шкалы есть еще и бумажная, то ее надо осторожно снять в горячей воде

Вот, что получилось, смотрим фото 2. На фото 3 показана свеженарисованная новая шкала.

Итак, открываем программу FrontDesigner_3.0, если ее у вас нет, скачиваем ее и устанавливаем.

После открытия программы перед вами появится примерно вот такое окно (скрин 1).

Щелкаем правой мышкой по активному полю 1, выбираем – «свойства». Устанавливаем размер листа, на котором будем рисовать шкалу в соответствии с ее размерами. Здесь же можно выбрать цвет листа, я выбрал белый.

Далее жмем на кнопку 2 — «Шкала» и перед нами откроется скрин 2, окно можно развернуть на весь экран. У меня при наведении курсора на активное поле, последний принимает вид лупы с названием «Увеличивалка», если в это время нажать на левую или правую мышь, то изображение убежит и придется рисовать все сначала. Так, что примите это к сведению. Возможно это глюк только моей проги, но я уже привык.Нажимаем на кнопку 1 и в выпадающем списке выбираем «Круговая линейная шкала».

Затем жмем «параметры» (см. скрин 3)и начинаем заполнять необходимые поля. 1 – выбираем угол, на который отклоняется стрелка, как так у всех измерительных головок он равен примерно 90°, то это значение и выставляем.

Далее устанавливаем значение радиуса, которое мы измеряли и запоминали. «Линия» — ставим «да», в этом случае на рисунке будет видна дуга, на которой находятся деления. «Цент окружности» -можно тоже поставить «да» для удобства. «1.Деления.Сегменты» — Количество больших делений, у меня их десять. «Деления.Длина мм» — так как у меня шкала большая, ставлю 7мм. «Деления» — ставим «Да» — разрешаем себе нарисовать деления между большими делениями. Далее, как с большими – задаем количество маленьких делений между двумя большими — 10, ставим высоту маленьких делений – 5мм. «Поворот» нам не нужен – ставим «0». «Надписи» — ставим «Да» — это циферки над делениями. «Выс. т – та мм » — высота циферок. «Зазор» — ставлю 3мм – это расстояние между большими делениями и надписями. «Угол текст» — 0. Дальше см. по скрину. В итоге получаем шкалу, которую видите, но без надписей. Жмем на кнопку 2 – «Надписи» и смотрим на скрин 4. Здесь все понятно, напротив номера каждого большого сегменты вписываем то, что нам надо. Далее нажимаем на зеленую галочку – «Добавить шкалу на макет», открывается опять главное окно программы, но уже с нашей шкалой – скрин 5.

Мой миллиомметр имеет два предела измерения, поэтому хотелось бы и его вывести на данную шкалу. Для этого снова нажимаем на значок «Шкала» и рисуем еще одну шкалу для другого предела (см. скрин 6).

Особенность этой шкалы состоит в том, что деления располагаются с другой стороны дуги. Это достигается тем, что перед числовым значением высоты деления ставится знак минус. И я поставил «нет» для маленьких делений. Далее жмем на зеленую галочку и уже в главном окне совмещаем две шкалы. Для облегчения дальнейшей работы включаем масштабную сетку, нажав на соответствующую кнопку – 1. После этого в соответствии с размерами нашей шкалы – фото2, чертим прямоугольник. По сторонам этого прямоугольника мы потом отрежем нужную нам часть. Теперь можно вставить нужный нам текст или значок, в этом уж сами разберетесь. Получаем скрин 7.

Далее жмем на значок принтера и печатаем шкалу. Я печатаю в основном на матовой фотобумаге для принтеров. Теперь о склейке. Сперва вырезаем по линиям прямоугольника заготовку шкалы. Затем обезжириваем алюминиевую шкалу (фото2). Наносим на обе заготовки клей ПВА. Даем чуть подсохнуть, аккуратно совмещаем обе заготовки и через фторопластовую пленку проглаживаем утюгом, имеющим температуру градусов 60С. Потом напильником (я обычно пользуюсь все время круглым, мелким) срезаем ненужную бумагу. Шилом протыкаем отверстия для крепления шкалы, собираем прибор в обратном порядке. ВСЕ. Смотрим фото 4. Ура! Чистая победа. Да, еще чуть-чуть. Если предполагается, что прибор будет работать не только дома, но и на улице, то бумажную шкалу обязательно надо защитить слоем бесцветного лака. Я для этих целей всегда использую автомобильный бесцветный импортный лак в аэрозольной упаковке – «Body Acrylic». Успехов всем, до свидания. К.В.Ю.

Меню

Туберкулезно-аллергический кератоконъюнктивит

О том, как проводится терапия данного заболевания, также важно рассказать. Лечение у взрослых кератоконъюнктивита данного типа является десенсибилизирующим, общеукрепляющим, антибактериальным

Хорошо помогают мидриатические средства для местного применения, ПАСК в каплях, а еще стрептомицин и кортизон. Нередко врач назначает прием 10-процентного раствора хлорида кальция внутрь. Принимать его надо после еды, по 1 столовой ложке трижды в день.

Полезно еще употребление рыбьего жира и поливитаминов. ПАСК сочетают с фтивазидом и стрептомицином.

Лечение проводится только совместно с фтизиатром.

Стрелочный вольтметр своими руками

Время аналоговых измерительных приборов уже давно прошло, но не смотря на это стрелочные измерительные головки находят широкое применения и не только в самодельных конструкциях. Они не сияют сверхвысокой точностью, но тем не менее в некоторых измерениях аналоговый прибор незаменим.

Представляю технологию переделки стрелочного вольтметра или микроамперметра в вольтметр на любое нужное напряжение. Такой вольтметр можно будет использовать в качестве измерителя напряжения в зарядных устройствах, регулируемых источниках питания и так далее. Для переделки ж елательно выбирать индикатор с линейной шкалой. В моем случае головкой будет служить высоковольтный вольтметр переменного напряжения, который выдран из стабилизатора напряжения со шкалой от 0 до 300 Вольт.

Мне нужно изготовить низковольтный вольтметр постоянного напряжения со шкалой от 0 до 16 вольт. Для начала головку нужно вскрыть, внутри мы можем наблюдать выпрямительный диод и ограничительный резистор, напряжение с клемм вольтметра подается на обмотку измерительной головки именно через эту цепочку из диода и резистора их чуть позже мы их уберем.

Аккуратно вынимаем шкалу, она приклеена на двухсторонний скотч. После этого её нужно отсканировать.

Рисунок редактируем в любом редакторе, хоть в пейнте. Удаляем все дефекты, дорисовываем неполные линии, символы, надписи ну и естественно меняем циферки на нужные.

Измеряем размеры родной шкалы, после чего открываем ворд, вставляем наш рисунок и указываем ранее измеренные размеры и распечатываем все это дело, лучше сразу несколько штук, мало ли что.

Обрезаем бумажку до нужных размеров и приклеиваем на место любым подручным клеем.

Теперь аккуратно откусываем цепочку из резистора и диода, о которой говорили в начале.

Припаиваем торчащие выводы друг к другу.

Таким образом, напряжение, которое будет подаваться на клеммы вольтметра, непосредственно пойдет на обмотку измерительной головки.

Головка очень чувствительная и стрелка полностью отклоняется, если на клеммы подается напряжение всего в пол вольта ну и думаю понятно, что это никуда не годится, т.к. мы планировали что стрелка будет отклоняться до предела, если на клеммы подается 16 вольт.

Берем переменный, а лучше подстроечный многооборотный резистор на 20-50 кОм и собираем простейшую схему

Для калибровки индикатора очень желательно наличие лабораторного блока питания, но можно ограничиться любым адаптером питания вольт на 6, параллельно которому подключаем мультиметр, он у нас будет в качестве эталона.

На вход подаем напряжение и медленно вращаем подстроечный резистор до тех пор пока стрелка не покажет то напряжение, которое мы видим на мультиметре.

То есть достаточно откалибровать головку на конкретной отметке, а за счет того, что шкала линейная другие значения напряжения наш измеритель будет также показывать правильно.

После калибровки подстроечный резистор выпаивается, замеряеться полученное сопротивление и на его место ставиться постоянный резистор с таким же сопротивлением. Если нет нужного резистора, то можно соединить несколько резисторов последовательно, для получения нужного сопротивления, желательно применение резисторов с погрешностью в 1 % и меньше.

Подстроечник можно оставить, но советую заклеить регулирующий винт, для предотвращения смещений.

Очень часто для постройки измерительных головок в самом начале через ограничительное сопротивление на головку подают эталонные напряжения и на пустой шкале делают метки, которые учитываются во время создания шкалы в редакторе — такой подход более предпочтителен и позволяет построить измерительные головки высокой точности.

Бизнес и финансы

БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумагиУправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги — контрольЦенные бумаги — оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудитМеталлургияНефтьСельское хозяйствоЭнергетикаАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьерОрганизация и управление производством

Справка о измерителях оптической мощности

Волоконно-оптические системы ценны за счёт своей способности передавать сигнал на значительные расстояния без использования усиления и регенерации. Но любая ВОЛС состоит из большого количества элементов, которые создают условия для потерь и увеличивают показатели суммарного затухания сигнала. К таковым относятся: механические разъёмы, оптические соединители, сварные соединения, коммутаторы оптические, ветвители, изоляторы. Серьёзный вклад в общие потери вносит загрязнение разъёмов, механическое повреждение волокна (трещины, критичные перегибы…), напряжение, слишком высокая и слишком низкая температура. Разные потери на конкретных длинах волн показывает многомодовое и одномодовое волокно, причём последнее является более чувствительным к всевозможным механических воздействиям.

Затухание сигнала в линии как основная характеристика измеряется в дБ при определённой рабочей длине волны

Другой важной величиной является обратное отражение, которое влияет на оптическую мощность системы и тоже измеряется в децибелах. Определение затуханий, обратного отражения, коэффициента ошибок – всё это позволяет оценить качество построенной кабельной сети или быстро выполнить поиск и ремонт повреждённой линии

Для выполнения такой задачи используется специальное оборудование и измеритель оптической мощности в частности. Данный прибор также помогает настроить уровень лазерного излучения активного передающего оборудования, собрать статистические данные для повышения эффективности и надёжности системы.

Принцип работы измерителя оптической мощности основан на регистрации входной оптической мощности. Выделяется два типа измерителей в зависимости от ключевого рабочего элемента:

  • На термофотодиодах.
  • На фотодиодах.

Приборы с ТФД преимущественно используются в лабораторных условиях.
Измерители оптической мощности ФД отличаются ограниченным диапазоном доступных для контроля волн и требуют калибровки. Однако они, вследствие своей повышенной чувствительности, небольшой инерционности и простоты, применяются чаще. На данного типа измеритель оптической мощности цена относительно невелика, учитывая все его достоинства.

Главным элементом измерителя оптической мощности выступает фотоприёмник. Как правило, он – широкополосный и может регистрировать параметры сигнала при разной длине волны. Оптический детектор, который более всего характеризует рабочие свойства прибора, принимает оптический сигнал и трансформирует его в электричество. А уже сигнальный процессор перерабатывает полученный электросигнал в децибелы или ватты, выдаёт данные на дисплей.

Основными техническими характеристиками измерителей оптического сигнала являются:

  • Вид детектора.
  • Линейность усилителя.
  • Особенности калибровки.
  • Диапазон динамический.
  • Точность.
  • Интерфейс.

К важным потребительским особенностям следует отнести тип питания измерителя мощности оптического сигнала, функцию записи результатов, автоматическое выключение, температурный диапазон эксплуатации, подсветку экрана и т.д.

Как рассчитать делитель высокого напряжения?

В любительской практике, чаще всего, приходится собирать подобные устройства исходя из имеющихся в наличии деталей. Поэтому, преступать к изготовлению щупа высоковольтного делителя следует только тогда, когда резисторы куплены и проверены. Исходя из имеющихся высоковольтных резисторов и следует производить окончательный расчёт делителя.

Примерный, предварительный расчёт верхнего плеча делителя.

Выбираем предельное напряжение, например, 50 киловольт. При таком напряжении, нам понадобится использовать 5 — 6 резисторов, каждый из которых выдерживает до 10-ти киловольт.

Рассчитываем делитель напряжения для шкалы мультиметра, например, 200 Вольт. Для удобства отсчёта, желательно, чтобы на 1 вольт шкалы приходился один киловольт измеряемого напряжения.

Входное сопротивление мультиметра 10 МОм. Однако для настройки делителя нам понадобится шунтировать это его плечо.

Поэтому, примем это плечо равным, например, 8 МОм.

8 (МОм) * 50 000 (Вольт) / 50 (Вольт) = Х+8 (МОм)

Х = 7992 МОм

7992 (МОм) / 6 (штук) = 1332 МОм

Конечно, найти требуемый номинал резисторов вряд ли удастся и возможно придётся выбирать из имеющихся в продаже резисторов. Делитель можно собрать и из разных номиналов резисторов, но тогда потребуется рассчитать падение напряжения для каждого резистора. Из своего опыта могу добавить, что резисторы С3-14-1-Б при своей длине 29мм могут выдерживать напряжение в полтора и даже в два раза превышает допустимое, однако их надёжность при этом уменьшается.

Для того чтобы уменьшить протекающий через киловольтметр ток, можно на порядок или два увеличить сопротивление верхнего плеча делителя. При этом нужно будет выбрать шкалу прибора, соответственно, 20 Вольт или 2 Вольта.

Предварительный расчёт шунта к мультиметру (R* грубо + R*точно).

R тестера + R шунта = 8 МОм;

R шунта = 10 * 8 / 10 — 8 = 40 (МОм)

Изображение части щупа киловольтметра в разрезе.

Изображение части щупа киловольтметра в разрезе.

1. Наконечник; 2. Гайка; 3. Шайба гетинаксовая или стеклотекстолитовая (подойдёт от узла крепления резисторов ПЭВ); 4. Втулка металлическая с резьбой внутри (подойдёт любая подходящая по размеру с внутренней резьбой М2,5 — М3(мм); 5. Разъём «мама» подходящего размера для присоединения к выводу высоковольтного резистора. Разъём требуется для того, чтобы можно было в период эксплуатации прибора легко заменить вышедший из строя резистор; 6. Первый резистор верхнего плеча делителя; 7. Отрезок лыжной палки (длину заготовки рекомендую выбрать в зависимости от предварительно рассчитанного и уже имеющегося в наличии количества резисторов).

Приступаем к окончательной сборке.

Сначала изготавливаем узел крепление наконечника, для чего припаиваем разъём «5» к втулке «4».

Затем вклеиваем в торец трубки, с использованием эпоксидной смолы, детали «3» и «4».

При склейке нужно проследить, чтобы эпоксидная смола не затекла в разъём «5».

Резисторы верхнего плеча делителя спаиваем последовательно и вставляем внутрь лыжной палки так, чтобы первый резистор вошёл в разъём расположенный внутри. Последний резистор закрепляем пайкой у основания щупа.

Собираем остальные элементы схемы, расположив в подходящей металлической или пластмассовой коробке.

1. Две клеммы для подключения заземления; 2. Разъём СР-50 для подключения тестера или осциллографа; 3. Резистор R*(грубо); 4. Резистор R* (точно); 5. Неоновая лампа; 6. Сменный наконечник.

Калибруем делитель.

Для калибровки удобно использовать источник постоянного образцового напряжения на 1000 Вольт, так как это максимальное напряжение, которое можно измерить, обычно, имеющимися в распоряжении радиолюбителя приборами. Если такого не имеется, то можно воспользоваться другим менее высоковольтным источником.

Калибровка сводится к подбору резисторов в нижнем и верхнем плече делителя. Разброс параметров высокомегаомных резисторов велик, поэтому может понадобится сделать повторный расчёт по результатом предварительной калибровки, чтобы внести поправки.

↑ Файлы

Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года. Уже более 10 лет наш журнал существует только на мои средства.

— Спасибо за внимание! Игорь Котов, главный редактор журнала «Датагор»

Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года. Уже более 10 лет наш журнал существует только на мои средства.

— Спасибо за внимание! Игорь Котов, главный редактор журнала «Датагор»

Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года. Уже более 10 лет наш журнал существует только на мои средства.

— Спасибо за внимание! Игорь Котов, главный редактор журнала «Датагор»

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации