Андрей Смирнов
Время чтения: ~18 мин.
Просмотров: 0

Принцип работы умножителя напряжения

Последовательный многозвенный однополупериодный выпрямитель

Последовательный многозвенный однополупериодный выпрямитель (рис.3) с умножением напряжения чаще всего применяется при малых (до 10…15 мА) токах нагрузки.

Его схема состоит из однополупериодных выпрямителей — звеньев, в следующем алгоритме — одно звено (диод и конденсатор) — просто од-нополупериодный выпрямитель, состоящий из диода и конденсатора (выпрямителя и фильтра), два звена — умножитель напряжения в два раза, три — в три раза и т.д.

Величины емкости каждого звена в большинстве случаев одинаковы и зависят от частоты питающего УН напряжения и тока потребления .

Рис. 3. Схема многозвенного однополупериодного умножителя напряжения.

Физические процессы увеличения напряжения в многозвенном однополупериодном (рис.3) УН удобно рассматривать при подаче на него переменного синусоидального напряжения. Работает УН следующим образом.

При положительной полуволне напряжения на нижнем выводе вторичной обмотки Т1 через диод VD1 течет ток, заряжая конденсатор С1 до амплитудного значения.

При положительной полуволне питающего напряжения на нижнем выводе вторичной обмотки Т1 к аноду VD2 прикладываются сумма напряжений на вторичной обмотке и напряжение на конденсаторе С1; в результате чего через VD2 проходит ток, потенциал правой обкладки С2 относительно общего провода увеличивается до удвоенного входного напряжения и т.д. Отсюда следует, что чем больше звеньев, тем большее постоянное напряжение (теоретически) можно получить от УН.

Для правильного понимания образования и распределения потенциалов, возникающих на радиоэлементах при работе УН, предположим, что один входной импульс (ВИ) полностью заряжает конденсатор С1 (рис.3) до напряжения +U.

Представим второй положительный импульс, возникающий на верхнем выводе Т1 и поступающий на левую по схеме рис.3 обкладку С1 так же в виде заряженного до напряжения +U конденсатора (Си).

Их совместное соединение (рис.4) примет вид последовательно соединенных конденсаторов. Потенциал на С1 относительно общего провода увеличится до +2U, VD2 откроется, и до +2U зарядится конденсатор С2.

Рис. 4. Схема умножителя напряжения.

При появлении импульса величиной +U на нижнем выводе Т1 и суммировании его аналогичным образом с напряжением +2U на конденсаторе С2, через открывшийся VD3 на C3 появится напряжение +3U и т.д.

Из приводимых рассуждений можно сделать вывод, что величина напряжения относительно «общего» провода (рис.3) только на С1 будет равна амплитудному значению входного напряжения, т.е. +U, на всех же остальных конденсаторах умножителя напряжение будет ступенчато увеличиваться с шагом +2U.

Однако для правильного выбора рабочего напряжения используемых в УН конденсаторов имеет значение не напряжение на них относительно «общего» провода, а напряжение, приложенное к их собственным выводам. Это напряжение только на С1 равно +U, а для всех остальных оно независимо от ступени умножения равно +2U.

Теперь представим окончание времени действия импульса ВИ, как замыкание конденсатора Си (рис.4) перемычкой (S1). Очевидно, что в результате замыкания потенциал на аноде VD2 понизится до величины +U, а к катоду будет приложен потенциал 2U. Диод VD2 окажется закрытым обратным напряжением 2U-U=U.

Отсюда можно сделать вывод, что к каждому диоду УН относительно собственных электродов приложено обратное напряжение, не больше амплитудного значения импульса напряжения питания. Для выходного же напряжения УН все диоды включены последовательно.

Инверторы, умножители напряжения: схемы, принцип работы, диаграммы

Инверторы— это устройства, преобразующие постоянный ток в переменный. Изобразим упрощенную схему инвертора на биполярных транзисторах (рис. 2.87), где имеет место соотношение uc1 = uc2 = ½ uвх

В схеме часто используют электролитические конденсаторы (большой емкости). Транзисторы работают в ключевом режиме:

включаются и выключаются поочередно. На выходе схемы возникает переменное напряжение.

Умножители напряжения 

Умножители напряжения преобразуют переменное напряжение в постоянное, причем выходное постоянное напряжение значительно превышает амплитуду входного переменного напряжения. Различают симметричные и несимметричные умножители напряжения.

Рассмотрим схему симметричного удвоителя напряжения (схему Латура) (рис. 2.88). Диоды включаются в разные полупериоды входного напряжения. В те полупериоды, когда uвх< 0, включается диод D1 и заряжается конденсатор С1 в другие полупериоды (uвх< 0), включается диод D2 и заряжается конденсатор С2. Напряжения на конденсаторах при холостом ходе приближаются к амплитудному значению Uвx.m входного напряжения, поэтому uвых= 2Uвx.mСхема несимметричного удвоителя напряжения имеет вид, показанный на рис. 2.89. В отрицательные полупериоды входного напряжения (uвх< 0) через диод D1 заряжается конденсатор С1 до амплитудного значения входного напряжения, а в положительные полупериоды (uвх> 0) через диод D2 под действием суммы напряжений uвхи uc1, действующих согласно, заряжается конденсатор С2 до удвоенного амплитудного значения входного напряжения.

Аналогичным образом строят утроители (рис. 2.90, а), учетверители (рис. 2.90, б) и другие умножители напряжения. В этих схемах напряжение на конденсаторе С1 равно амплитудному значению входного напряжения, а на всех остальных конденсаторах — удвоенному амплитудному значению входного напряжения. Входное напряжение на такие умножители поступает обычно с вторичной обмотки трансформатора, и тогда такое устройство называют выпрямителем с умножением напряжения. Обычно они применяются в высоковольтных выпрямителях, потребляющих небольшой ток (единицы миллиампер), например для питания кинескопов телевизоров.

Рассмотренные ранее выпрямители являлись нерегулируемыми, так как величина выходного постоянного напряжения однозначно определялась входным напряжением выпрямителя.

Управляемые выпрямители позволяют регулировать выходное напряжение. Они, как правило, построены на основе однооперационных (обычных, незапираемых) тиристоров.

Для примера рассмотрим схему однофазного двухполупериодного управляемого выпрямителя со средней точкой (рис. 2.91).

Однофазного двухполупериодного управляемого выпрямителя

Если импульсы управления подаются сразу после появления на тиристорах положительных напряжений, то схема будет работать точно так же, как схема на диодах. Изобразим временную диаграмму выходного напряжения для случая, когда импульсы управления подаются с некоторой задержкой по отношению к указанным моментам времени (рис. 2.92, жирная линия). Через tвкл обозначена указанная выше задержка. Часто временные диаграммы подобных схем изображают, откладывая по горизонтальной оси не время t, а величину ωt (ω — круговая частота). Тогда указанной задержке соответствует определенный угол αвкл сдвига по фазе между напряжением на тиристоре и импульсами управления, причем αвкл = ω · tвклУгол αвкл называют углом управления. Для рассматриваемой схемы угол управления, как легко заметить, может изменяться в пределах от 0 до π (от 0 до 180 град.). Чем больше угол управления, тем меньше среднее напряжение на выходе выпрямителя.

Пунктиром изображена временная диаграмма, соответствующая отсутствию задержки.

Библиография

  • Кампардо, Джованни; Микелони, Рино; Новосел, Дэвид СБИС-дизайн энергонезависимых воспоминаний , Springer, 2005 ISBN  3-540-20198-X .
  • Лин, Юй-Шианг Схемы малой мощности для миниатюрных сенсорных систем , Издательство ProQuest, 2008
    ISBN  0-549-98672-3 .
  • Лю, Mingliang проясняет схемы коммутируемых конденсаторов , Newnes, 2006
    ISBN  0-7506-7907-7 .
  • Макгоуэн, Кевин, Полупроводники: от книги до макета , Cengage Learning, 2012
    ISBN   .
  • Пелузо, Винченцо; Steyaert, Michiel; Сансен, Вилли М.К. Конструкция низковольтных маломощных КМОП-дельта-сигма аналого- цифровых преобразователей , Springer, 1999
    ISBN  0-7923-8417-2 .
  • Юань, Фэй КМОП-схемы для пассивных беспроводных микросистем , Springer, 2010
    ISBN  1-4419-7679-5 .
  • Zumbahlen, Hank Linear Circuit Design Handbook , Newnes, 2008
    ISBN  0-7506-8703-7 .

Операция

Если предположить, что пиковое напряжение источника переменного тока равно + U s , и что значения C достаточно высоки, чтобы позволить при зарядке протекать ток без значительного изменения напряжения, тогда (упрощенная) работа каскада будет такой: следует:

Иллюстрация описанной работы при + U s = 100 В

  1. отрицательный пик (-U s ): конденсатор C 1 заряжается через диод D 1 до U s  V ( разность потенциалов между левой и правой пластинами конденсатора составляет U s )
  2. положительный пик (+ U s ): потенциал C 1 складывается с потенциалом источника, таким образом заряжая C 2 до 2U s через D 2
  3. отрицательный пик: потенциал C 1 упал до 0 В, что позволяет C 3 заряжаться через D 3 до 2U s .
  4. положительный пик: потенциал C 2 повышается до 2U с (аналогично шагу 2), также заряжается C 4 до 2U с . Выходное напряжение (сумма напряжений ниже C 2 и C 4 ) повышается до тех пор, пока не будет достигнуто 4U s .

На самом деле, чтобы C 4 достиг полного напряжения , требуется больше циклов . Каждый дополнительный каскад из двух диодов и двух конденсаторов увеличивает выходное напряжение вдвое по сравнению с пиковым напряжением питания переменного тока.

Принцип работы умножителя напряжения

Чтобы понять, как функционирует схема, лучше посмотреть работу так называемого универсального устройства. Здесь число каскадов точно не задано, а выходное электричество определяется формулой: n*Uin = Uout, где:

  • n – количество присутствующих каскадов схемы;
  • Uin – напряжение, подаваемое на вход устройства.

При начальном моменте времени, когда на схему приходит первая, допустим, положительная полуволна, диод входного каскада пропускает ее на свой конденсатор. Последний заряжается до амплитуды поступившего электричества. При второй отрицательной полуволне первый диод закрыт, а полупроводник второго каскада пускает ее к своему конденсатору, который также заряжается. Плюс к этому напряжение первого конденсатора, включенного последовательно со вторым, суммируется с последним и на выходе каскада получается уже удвоенное электричество.

На каждом последующем каскаде происходит то же самое – в этом принцип умножителя напряжения. И если просмотреть прогрессию до конца, то получается, что выходное электричество превосходит входное в энное количество раз. Но как и в трансформаторе, сила тока здесь будет уменьшаться при увеличении разности потенциалов – закон сохранения энергии также работает.

Схемы выпрямителей с умножением напряжения

Схемы с умножением напряжения целесообразно применять для получения достаточно высоких выпрямленных напряжений при малых токах нагрузки. Эти схемы применяют для питания электронно-лучевых трубок, фотоумножителей, в установках для испытания электрической прочности.

Схемы выпрямителей, работающих с умножением напряжения, содержат несколько выпрямителей с емкостным фильтром, выходные напряжения которых суммируются.

4.1. Однофазная несимметричная схема удвоения напряжения

Схема на рис.5 представляет собой два однофазных однополупериодных выпрямителя. Первый выпрямитель VD1, C1 является однополупериодным выпрямителем с параллельно включенным диодом. За счет его работы конденсатор C1 заряжается до амплитудного напряжения U2. На нем образуется постоянное напряжение UC1=U2m. На диоде VD1 образуется пульсирующее напряжение. Максимальное значение напряжения на нем

UVD1,MAX=UC1+U2m .

Это пульсирующее напряжение окончательно выпрямляется и сглаживается обычным выпрямителем с емкостной нагрузкой VD2, C2. В итоге получаем выходное напряжение U0 примерно равное удвоенному значению амплитуды напряжения вторичной обмотки трансформатора.

Рис. 5. Несимметричная схема удвоения напряжения.

Частота пульсации выпрямленного напряжения на нагрузке равна частоте сети.

Обратное напряжение на диодах равно удвоенной амплитуде напряжения вторичной обмотки трансформатора.

Основным недостатком схемы является то, что основная частота пульсации выпрямленного напряжения, равна частоте сети.

Для увеличения кратности выпрямленного напряжения увеличивают число диодов и конденсаторов, включая их аналогично описанной схеме. На рис. 6, а показана схема умножения напряжения, где в целях получения различной кратности умножения напряжения предусмотрены соответствующие варианты подключения нагрузки к схеме (показаны пунктиром), а именно: присоединяя нагрузку к точкам б, в и г схемы, получим умножение напряжения соответственно в 2, 3 и 4 раза. В этой схеме все конденсаторы с нечетными номерами (С1, С3) заряжаются в один полупериод напряжения и2, а с четными номерами (С2, С4) — в другой полупериод.

Чем выше кратность умножения напряжения, тем большими будут пульсации выпрямленного напряжения при одинаковой емкости конденсаторов, так как для зарядного и разрядного токов они включены последовательно.

Рис.6. Несимметричная схема умножения напряжения в 4 раза

Недостатки таких выпрямителей аналогичны недостаткам однополупериодного однофазного выпрямителя с емкостной нагрузкой. Кроме того, они обладают увеличенным внутренним сопротивлением из-за последовательного включения диодов.

4.2. Двухфазные симметричные схемы

Двухфазные симметричные схемы умножения можно; получить соединением нескольких несимметричных схем. На рис.7 показана двухфазная схема выпрямления с умножением напряжения в 6 раз.

Рис. 7. Симметричная схема умножения напряжения

Конденсаторы с нечетными номерами (С1, С3, С5, C1’, С3’, С5’) заряжаются токами соответствующих диодов один раз в период напряжения вторичной обмотки, конденсаторы с четными номерами (С2, С4, С6) — дважды, поэтому частота пульсации выпрямленного напряжения в 2 раза больше частоты сети.

Примерный расчет схемы умножителя

Перед тем как начинать расчет, задаются основные характеристики устройства

Это особенно важно, когда необходимо изготовить умножитель напряжения своими руками. В первую очередь, это значения входного и выходного напряжения, мощность и габаритные размеры

Следует учитывать и некоторые ограничения, касающиеся параметров напряжения. Его величина на входе должна быть не более 15 кВ, границы диапазона частоты составляют от 5 до 100 кГц.

Рекомендуемое значение выходного высоковольтного напряжения – не выше 150 кВ. Величина выходной мощности умножителя напряжения составляет в пределах 50 Вт, хотя можно создать устройство и с более высокими параметрами, в котором мощность достигает даже 200 Вт.

Выходное напряжение находится в прямой зависимости с токовыми нагрузками и его можно рассчитать с помощью формулы: Uвых = N х Uвх – (I (N3 + +9N2 /4 + N/2)) / 12FC, в которой N соответствует количеству ступеней, I – токовой нагрузке, F – частоте напряжения на входе, С – емкости генератора. Если заранее задать требуемые параметры, данная формула поможет легко рассчитать, какая емкость должна быть у конденсаторов, применяемых в схеме.

Что такое инвертор напряжения

Индикатор напряжения на светодиодах: схема, как сделать своими руками самодельный указатель напряжения в сети

Схема стабилизатора напряжения

Схема однополупериодного выпрямителя

Схема подключения стабилизатора напряжения в частном доме

Как сделать индикатор напряжения на светодиодах

Практические схемы УН для КВ и УКВ

Радиолюбителям-коротковолновикам, занимающимся самостоятельным изготовлением радиоаппаратуры, знакома проблема изготовления хорошего силового трансформатора для выходного каскада передатчика или трансивера.

Эту проблему поможет решить схема, показанная на рис.2. Достоинством практической реализации является использование готового, не дефицитного в связи с уходом старой техники, силового трансформатора (СТ) от унифицированного лампового телевизора (УЛТ) второго класса, который можно использовать в качестве силового трансформатора для питания усилителя мощности (УМ) радиостанции 3 категории.

Рекомендуемое техническое решение позволяет получить от СТ все необходимые выходные напряжения для УМ без каких либо доработок. СТ выполнен на сердечнике типа ПЛ, все обмотки конструктивно выполнены симметрично и имеют по половине витков на каждой из двух катушек.

Такой СТ удобен как для получения необходимого анодного напряжения, так и напряжения накала, т.к. допускает использование в качестве выходной в УМ как лампы с 6-вольтовым накалом (типа 6П45С), так и лампы (типа ГУ50) с 12-вольтовым накалом, для чего необходимо только соединить обмотки накала параллельно или последовательно. Применение же удвоителя позволит без затруднений получить напряжение 550…600 В при токе нагрузки порядка 150 мА.

Этот режим оптимален для получения линейной характеристики для лампы ГУ50 при работе на SSB. Соединив обмотки накала последовательно (используемые в ТВ для питания накала ламп и кинескопа) и применив УН по схеме рис.3, можно получить источник отрицательного напряжения смещения для управляющих сеток ламп (порядка минус 55.65 В).

В связи с небольшим током потребления по управляющей сетке, в качестве конденсаторов такого УН можно применить неполярные конденсаторы 0,5 мкФ на 100.200 В.

Эти же обмотки можно использовать и для получения напряжения коммутации режима «прием-передача». При построении выходного каскада с заземленной сеткой управляющая сетка подключается к источнику отрицательного напряжения (УН 55.65 В), катод подключается через дроссель (015 мм, n=24, ПЭВ-1 00,64 мм) к -300 В, а на анод подается +300 В, напряжение возбуждения подается на катод через конденсатор .

Можно подключить управляющую сетку непосредственно к -300 В, катод подсоединяется к -300 В через две параллельно соединенных цепочки, каждая из которых состоит из стабилитрона Д815А и 2-ваттного резистора 3,9 Ом . Напряжение возбуждения в этом случае подается на катод через широкополосный трансформатор.

Если выходной каскад УМ выполнен по схеме с общим катодом, то на анод подается +600 В, а на экранную сетку +300 В с точки соединения С1, С2, С3, С4 (выход -300 В соединен с «общим» проводом RXTX), что позволяет избавиться от мощных гасящих резисторов в цепи экранной сетки, на которых бесполезно выделяется большая тепловая мощность. На управляющую сетку подается отрицательное смещение -55.65 В с упомянутого ранее УН.

Для уменьшения уровня пульсаций питающего напряжения в выпрямителе можно также использовать и штатные дроссели (L1, L2, рис.2) фильтра источника питания того же УЛТ типа ДР2ЛМ с индуктивностью первичной обмотки порядка 2 Гн. Намоточные данные СТ и ДР2ЛМ приведены в .

Умножители напряжения на диодах — схемы включения, варианты подключения, утроители, умножители на 4, 5, 6, 8 | РадиоДом

Умножитель напряжения — схема выпрямителя особого типа, амплитуда напряжение на выходе которой теоретически в целое число раз выше, чем на входе. То есть, с помощью удвоителя напряжения можно получить 200 вольт постоянного тока из 100 вольт переменного тока источника, а с помощью умножителя на восемь — 800 вольт постоянного. Это если не учитывать падение напряжения на диодах (0,7 вольт на каждом).В практике на схемах любая нагрузка будет немного уменьшенной от полученных расчетов. Умножитель содержит в себе конденсаторы и диоды. Нагрузочная способность умножителя пропорциональна частоте, величине емкости входящих в его состав конденсаторов и обратно пропорциональна количеству звеньев.

Примечание: отличная нагрузочная способность.

Примечание: универсальность.Генераторы Кокрофта-Уолтона применяются во многих областях техники, в частности, в лазерных системах, в источниках высокого напряжения, в системах рентгеновского излучения, подсветке жидкокристаллических экранов, лампах бегущей волны, ионных насосах, электростатических системах, ионизаторах воздуха, ускорителях частиц, копировальных аппаратах, осциллографах, телевизорах и во многих других устройствах, где необходимо одновременно высокое напряжение и постоянный ток.

Отличная нагрузочная способность.

Отличная нагрузочная способность.

Отличная нагрузочная способность.

Симметричная схема, хорошая нагрузочная способность.

Симметричная схема, хорошая нагрузочная способность.

Симметричная схема, хорошая нагрузочная способность, две полярности относительно общей точки.

Отличная нагрузочная способность.

отличная  нагрузочная способность.

Симметричная схема, отличная нагрузочная способность, две полярности относительно общей точки.

Симметричная схема, отличная нагрузочная способность.

Симметричная схема, отличная нагрузочная способность, две полярности относительно общей точки.

Превосходная нагрузочная способность, ступенчатое увеличение напряжения на каждом звене.

Нагрузочная характеристика имеет две области — область низкой мощности – в диапазоне выходных напряжений от 2U до U и область повышенной мощности – при выходном напряжении ниже U.

Наличие дополнительного маломощного выхода с удвоенным напряжением питания.

Хорошая нагрузочная способность. Одна из классических схем умножения напряжения в высоковольтных источниках питания для физических экспериментов. На рисунке изображен удвоитель напряжения, но число каскадов в умножителе может быть увеличено.

Библиография

  • Ахмед, Сайед Имран Методы проектирования и улучшения конвейерных АЦП , Springer, 2010
    ISBN  90-481-8651-X .
  • Bassett, RJ; Taylor, PD (2003), «17. Power Semiconductor Devices», Справочник инженера-электрика , Newnes, стр. 17 / 1–17 / 37, ISBN 0-7506-4637-3
  • Кампардо, Джованни; Микелони, Рино; Новосел, Дэвид СБИС-дизайн энергонезависимых воспоминаний , Springer, 2005
    ISBN  3-540-20198-X .
  • Добрый, Дитер; Фезер, Курт (2001), переводчик Я. Нараяна Рао (редактор), Высоковольтные методы испытаний , Newnes, ISBN 0-7506-5183-0
  • Кори, Ральф; Schmidt-Walter, Heinz Taschenbuch der Elektrotechnik: Grundlagen und Elektronik , Deutsch Harri GmbH, 2004
    ISBN  3-8171-1734-5 .
  • Liou, Juin J .; Ортис-Конде, Адельмо; Гарсиа-Санчес, Ф. Анализ и разработка полевых МОП-транзисторов , Springer, 1998
    ISBN  0-412-14601-0 .
  • Лю, Минлян (2006), Демистификация схем переключаемых конденсаторов , Newnes, ISBN 0-7506-7907-7
  • МакКомб, золотая жила гаджетчика Гордона Гордона МакКомба! , McGraw-Hill Professional, 1990
    ISBN  0-8306-3360-X .
  • Mehra, J; Рехенберг, Х. Историческое развитие квантовой теории , Springer, 2001
    ISBN  0-387-95179-2 .
  • Миллман, Джейкоб; Халкиас, Christos C. Integrated Electronics , McGraw-Hill Kogakusha, 1972
    ISBN  0-07-042315-6 .
  • Пелузо, Винченцо; Steyaert, Michiel; Сансен, Вилли М.К. Конструкция низковольтных маломощных КМОП-дельта-сигма аналого- цифровых преобразователей , Springer, 1999
    ISBN  0-7923-8417-2 .
  • Райдер, Дж. Д. (1970), Основы электроники и приложения , Pitman Publishing, ISBN 0-273-31491-2
  • Wharton, W .; Ховорт, Д. Принципы телевизионного приема , Pitman Publishing, 1971
    ISBN  0-273-36103-1 .
  • Юань, Фэй КМОП-схемы для пассивных беспроводных микросистем , Springer, 2010
    ISBN  1-4419-7679-5 .
  • Zumbahlen, Hank Linear Circuit Design Handbook , Newnes, 2008
    ISBN  0-7506-8703-7 .

Умножитель напряжения ⋆ diodov.net

При изготовлении электронных устройств, в частности блоков питания, в некоторых случаях возникает необходимость иметь выпрямленное напряжение большей величины, чем на клеммах вторичной обмотке трансформатора или в розетке 220 В.

Например, после выпрямления сетевого напряжения 220 В на фильтрующем конденсаторе при очень малой нагрузке можно получить максимум амплитудное значение переменного напряжения 311 В. Следовательно конденсатор зарядится до указанного значения.

Однако применяя умножитель напряжения можно повысить его до 1000 В и более.

Удвоитель напряжения

Схема умножителя напряжения может выполняться в нескольких вариантах, одна принцип действия всех их заключается в следующем.

В разные полупериоды переменного тока происходит поочередно зарядка нескольких конденсаторов, а суммарное напряжение на них превышает амплитудное значение на обмотке.

Таким образом, за счет увеличения числа конденсаторов и, как далее будет видно, количества диодов, получают напряжение в несколько раз превышающее величину подведенного.

Теперь давайте рассмотрим конкретные примеры и схемные решения.

Пусть в начальный момент потенциалы на обмотке имеют такие знаки, что ток протекает от точки 1 к точке 2. Проследим дальнейший путь тока. Он протекает через конденсатор C2, заряжая его, и возвращается к обмотке через диод VD2.

В следующий полупериод ЭДС во вторичной обмотке направлена от точки 2 к 1 и через диод VD1 происходит зарядка конденсатора C1 до того же значения, что и С2.

Таким образом, за счет последовательного соединения двух конденсаторов C1 и C2 на сопротивлении нагрузки получается удвоенное напряжение.

Если измерить значение переменного напряжения на обмотке и постоянное на одном из конденсаторов, то они буде отличаться почти в 1,41 раза. Например при действующем значении на вторичной обмотке, равном 10 В, на конденсаторе будет приблизительно 14 В.

Это поясняется тем, что конденсатор заряжается до амплитудного, а не до действующего значения переменного напряжения. А амплитудное значения, как известно в 1,41 раза выше действующего.

К тому же мультиметром возможно измерить лишь действующие значения переменных величин.

Рассмотрим еще один вариант. Здесь для умножения напряжения используется несколько иной подход. Когда потенциал точки 2 выше потенциал т.1 под действием протекающего тока заряжается конденсатор С1, а цепь замыкается через VD2.

После изменения направления тока, вторичная обмотка W2 и конденсатор С1 можно представить, как два последовательно соединенные источника питания с равными значениями амплитуды, поэтому конденсатор С2 зарядится до их суммарного напряжения, т.е. на его обкладках оно будет в два раза больше, чем на выводах вторичной обмотки. Во время тога, как конденсатор С2 будет заряжаться, С1 наоборот, будет разряжаться. Затем все повторится снова.

Умножитель напряжения многократный

Процессы в схеме утроения напряжения протекают в такой последовательности: сначала заряжаются конденсаторы С1 и С3 через сопротивление R и соответствующие диоды VD1 и VD3. В следующий полупериод С2 через VD2 заряжается до удвоенного напряжения (С1 + обмотка) и на сопротивлении нагрузки получается утроенное значение.

Больший интерес имеет следующий умножитель напряжения. Рассмотрим принцип его работы. Когда потенциал точки 1 положителен относительно точки 2 ток протекает по пути через VD1 и С1 заряжая конденсатор.

В следующий полупериод, когда ток изменил свое направление, заряжается второй конденсатор через второй диод до величины, равного сумме напряжений на С1 и обмотке трансформатора. При этом С1 разрядится. В третий полупериод, когда первый конденсатор снова начнет заряжаться, С2 через третий диод разрядится на С3, зарядив его до двойного значения относительно выводов обмотки.

К концу третьего полупериода на нагрузку будет подано суммарное напряжение заряженных конденсаторов С1 и С3, т. е. примерно утроенное значение.

По аналогии с рассмотренными схемами могут быть построены схемы с большей кратностью умножения. Но следует помнить, что с увеличением числа умножений по причине большего содержание в схеме диодов и конденсаторов возрастает внутренне сопротивление выпрямителя, что приводит к дополнительной просадке напряжения.

Схемы с умножением напряжения применяются для питания малой нагрузки, т.е. сопротивление нагрузки должно быть высоким. В противном случае нужно использовать неполярные конденсаторы большой емкости, рассчитанные на высокое напряжение. Это связано с тем, что при значительном токе нагрузки конденсаторы будут быстро разряжаться, что вызовет недопустимо большие пульсации на нагрузке.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации