Андрей Смирнов
Время чтения: ~20 мин.
Просмотров: 0

Триггеры в электронике — что это такое и где используется

D-триггер с работой по уровню (защелка) и по фронту

D-триггер получил название от английского слова «delay» — задержка, которая реализуется подачей сигналов на вход синхронизации. В раннее рассмотренном RS-триггере было два входных сигнала, но для передачи двоичного кода достаточно одного входа с разными уровнями напряжения: высокий (1) и низкий (0). На два входа нельзя было подавать единицу одновременно, поэтому в D триггере эти входы объединены с помощью инвертора (рисунок 1 а), что исключает возможность возникновения запрещенного состояния.

Рисунок 1 – а) усовершенствованная схема RS-триггера б) графическое изображение D-триггера

Триггер D может работать по уровню сигнала, он еще называется защелка. В таком устройстве нужно ограничивать длительность синхронизирующего сигнала, потому что пока синхросигнал подается — переходной процесс со входа поступает на выход.

Схема зещелки собранная на логических элементах 2ИЛИ-НЕ (синий провод – логический ноль, красный – единица):

Временная диаграмма работы:

Триггер-защелка включается в работу только по синхросигналу. Когда на С логический ноль, то выход Q хранит прошлое записанное в него состояние, при этом уровень напряжения на входе D никак не может на него повлиять. Если подать «1» на вход синхронизации, то устройство будет работать в режиме «прозрачности» — выходной сигнал мгновенно повторяет сигнал входа. Но при отключении синхросигнала в памяти триггера останется последнее состояние входа и именно оно будет на Q. То есть получается «защелкнутый входной сигнал».

Исходя из описанного принципа работы, составим таблицу истинности:

Х означает, что состояние не имеет значения, иногда обозначают, как «тильда»

D-триггер, работающий по фронту, не требует контроля длительности синхронизирующего (тактового) сигнала, потому что фронт сигнала С проходит практически мгновенно (не может длиться продолжительное время). Триггер, который будет запоминать информацию лишь по фронту синхросигнала, можно построить из двух D-триггеров, тактовый сигнал на которые будет подаваться в противофазе:

Соответственно, схему на логических элементах можно сконструировать с помощью четырех ИЛИ-НЕ и одного инверсного блока:

На рисунке 2 (анимации) в правом верхнем углу для упрощения восприятия, на первом кадре написана цифра «1». Начиная рассматривать с этого кадра, будет проще проследить принцип работы (синий цвет – «0», красный – «1»).

Временная диаграмма Д-триггера, работающего по фронту

Рассмотрим принцип работы. Q’ – выход первого триггера, Q – второго. Так как тактовый сигнал на первый и второй вход подаются инверсировано, то когда один находится в режиме хранения, другой пропускает информацию со входа на выход. По диаграмме видно, что значение на выходе триггера Q изменится только по спадающему фронту синхронизирующего (тактового) сигнала С. То есть значение на Q будет соответствовать величине напряжения на входе D в момент изменения синхросигнала с 1 на 0.

Так как данное устройство состоит из двух более простых устройств, то условное его обозначение следующее:

Где ТТ означает наличие в строении двух простых триггеров, а «треугольник» около входа С – работу триггера по фронту сигнала.

Недостаточно прав для комментирования

RS-триггеры

Логические устройства вычислительной техники

Что же такое RS-триггеры? В моем понимании — это устройства, которые могут принимать одно из двух состояний. На основании этого можно сделать вывод, что этот логический элемент может хранить один бит информации (грубо говоря, ноль или единицу). Существуют некоторые типы данного вида RS-триггеров. Давайте рассмотрим один из них:

Асинхронный RS-триггер

Имеет два входа “R» и «S” и два выхода, как правило это “Q” и “не Q” (т.е. инверсный) . Лично я запомнил, какой элемент для чего, после того, когда узнал, что R – это “RESET” (что означает “сброс”) и “S” – это “SET” (что означает установка)

Принимая во внимание изложенную информацию можно указать, что при подаче сигнала (единица) на “S” на выходе “Q” устанавливается единица, а при подаче единицы на “R” приводит к сбросу единицы на выходе “Q” и установки на нем нуля. Рассмотрим работу на базе элементов “2ИЛИ-НЕ” и “2И-НЕ”

Для этого используем графическое изображение этих элементов.

Итак, разберем принцип работы RS-триггера на базе элементов “2ИЛИ-НЕ”. В начальном положении, когда на R и S отсутствуют сигналы (логический “0”), на выходе “Q” присутствует также “0” или “1” – это исходное состояние. Выглядит это так:

Далее подадим на “S” логическуюединицу и получим на выходе “Q” также единицу. Будет выглядеть это так.

Следующим шагом подадим логическую единицу на “R” и уже на “Q” получим “0”. Изобразим это на рисунке.

Более наглядную работу RS-триггера на элементах 2ИЛИ-НЕ можно продемонстрировать, изобразив таблицу истинности. Вот так она выглядит.

Сейчас рассмотрим работу на элементах 2И-НЕ. Выглядит она аналогично, как и на элементах 2ИЛИ-НЕ с той лишь разницей, что активным уровнем является не “1”как в предыдущем случае, а “0”. Убедимся в этом, используя рисунок и таблицу истинности.

Асинхронным триггерам свойственно такое явление как присутствие “гонок”, что это? Это не одновременное или даже не согласованное по времени поступление информации на входы. Это приводит к наложению одного сигнала на другой. Чем это вызвано? А вызвано это разным временем быстродействия элементов, через которые проходит сигнал, прежде чем попасть на входы триггера, в данном случае на “R” или “S”. Покажем это явление на диаграмме.

Чтобы избавиться от этого явления, был придуман вариант подачи синхросигнала и асинхронный триггер превратился в синхронный.

Синхронные RS–триггеры

Этот вид логического устройства отличается от рассмотренного выше тем, что у него помимо входов “R” и “S” присутствует и третий “C”, на который подаются синхроимпульсы. Без этих импульсов информация на “R” и ”S” восприниматься не будет. Схему синхронного RS–триггера и диаграмму работы изобразим графически.

Из диаграммы видно, что в данном случае срабатывание происходит по переднему фронту (но бывает и по спаду) синхроимпульса.

Передний фронт синхроимпульса – это участок прямоугольного импульса, где происходит его возрастание.

Спад синхроимпульса – это участок спада синхроимпульса.

Именно здесь сделаем небольшое отступление и укажем, что бывают триггеры динамические и статические и соответственно со статическим и динамическим управлением. Чем они отличаются? Объясним максимально просто.

Динамические триггеры – на выходах, которых присутствуют либо непрерывная последовательность импульсов определенной частоты, либо ее отсутствие. (Напоминает управляемый генератор).

Статические триггеры– на выходах которых присутствуют неизменный уровень напряжения, либо его отсутствие.

Со статическим управлением – восприятие сигналов на информационных входах происходит только при подаче на “С” логической единицы (логического нуля).

С динамическим управлением – восприятие сигналов на информационных входах происходят в моменты перепада сигнала на “С”(Передний фронт синхроимпульса или спад синхроимпульса).

Если логические функции входов зависят от его выходов, то целесообразно использовать более рациональную конструкцию элементов.

Похожие записи

Классификация

Изделия этой категории разделены на две основные группы по принципу сигналов управления. В первой – формируется заданная последовательность выходных сигналов, если установлено состояние «1». После переходе в «0» генерация прекращается. Вторая – способна переключать выходное напряжение соответствующим образом. Как правило, «1» примерно соответствует уровню источника питания.

Также триггеры различают по следующим параметрам:

  • синхронность рабочих циклов;
  • статические (динамические) способы управления;
  • сложность логических схем;
  • одно,- или двухступенчатые.

Триггеры на логических элементах и на операционном усилителе

Для реализации статических триггеров хорошо подходит схема усилителя с двумя каскадами. Связь между ними организуют прямую либо с ограничительными резисторами в соответствующих цепях.

Триггер на логических элементах

Триггер (Trigger) Шмитта

Изделия этой категории могут быть созданы с применением разной элементной базы. В данном разделе рассмотрен триггер Шмитта на транзисторах. Он управляется изменением аналогового сигнала. В зависимости от уровня напряжения, выполняется переключение состояния памяти в соответствующее положение «0» или «1».

Триггер Шмидта на транзисторах с подключенной нагрузкой

RS-триггер. Принцип работы, функциональные схемы, таблица переходов

Триггер – простейшее устройство, представляющее собой цифровой автомат. Он имеет два состояния устойчивости. Одному из этих состояний присваивается значение «1», а другому — «0». Состояние триггера, а также значение двоичной информации, которая в нем хранится, определяется выходными сигналами: прямым и инверсным. В том случае, когда на прямом выходе установится потенциал, который соответствует логической единице, состояние триггера называется единичным (при этом потенциал на инверсном выходе равен нулю). Если же на прямом выходе нет потенциала, то состояние триггера называется нулевым.

Классифицируют триггеры по следующим признакам:

1. По способу записываемой информации (асинхронные и синхронные).

2. По способу управлением информацией (статистические, динамические, одноступенчатые, многоступенчатые).

3. По способу реализации логических связей (JK-триггер, RS-триггеры, T-тригер, D-триггер и других типов).

Основными параметрами всех типов триггеров являются наибольшее значение длительности входного сигнала, время задержки необходимого для переключения триггера, а также разрешающее время срабатывания.

В этой статье поговорим о таком типе устройств, как RS-триггер. Они бывают двух типов: синхронные и асинхронные.

Асинхронный RS-триггер конструктивно имеет два прямых (R и S) входа. Это устройство функционирует согласно таблице переходов.

Запрещенной для такого триггера является комбинация сигналов на входах устройства, вызывающая состояние неопределенности. Эта комбинация может быть выражена требованием RtSt=0. При минимизации карты Карно выводится закон функционирования триггера, который называют характеристическим уравнением: Q(t+1)=St V R’tQt. При этом RtSt будет равно нулю.

На функциональной схеме изображен RS-триггер асинхронного типа на элементах И-НЕ и во втором исполнении на элементах ИЛИ-НЕ.

Второй тип – синхронный RS-триггер. Такое устройство конструктивно имеет три прямых входа S, R, и C. Отличие триггера синхронного типа от асинхронного заключается в наличии входа синхронизации (С). Он необходим по следующим причинам: ведь на входы устройства (логического элемента) сигналы поступают не всегда одновременно. Это связано с тем, что они проходят через различные типы и количество узлов, которые обладают разной задержкой. Это явление называют «состязанием». В результате таких «состязаний» полученные значения сигналов будут накладываться на предыдущие значения других сигналов. Все это приводит к ложному срабатыванию устройства.

Это явление можно устранить подачей на вход устройства сигналов временного стробирования. А именно: на вход логического элемента, кроме непосредственно информационных сигналов, подаются ключевые синхронизирующие импульсы, к этому моменту информационные входные сигналы успеют зафиксироваться на входах.

Главное условие правильности работы срабатывания логических каскадов в RS-триггере и управляемых ими логических схем – недопустимость одновременного действия сигнала Rt или St, переключающего устройство, и съема информации с выхода Q(t+1) триггера. В связи с этим в потенциальных сериях элементов содержатся только синхронные.

RS-триггер синхронного типа представлен характеристическим уравнением: Q(t+1)=StCt V R’tQt V QtC’t.

На фото изображен RS-триггер синхронного типа на элементах И-НЕ.

Входные логические элементы И-НЕ передают переключающую логическую единицу с информационного входа S или R на необходимые входы асинхронного триггера типа RS с инверсными входами только при условии наличия на синхронном входе (С) сигнала с уровнем логической единицы.

Схемы управления

  1. Левая часть — движение, правая — огонь

Эта схема включена по умолчанию. Вы ведете персонажа, скользя большим пальцем по левой половине экрана, а прицеливаетесь на правой части. Кнопка выстрела зафиксирована справа, то есть она никогда не меняет расположения. Этот вариант хорош для тех, кто привык опираться на мышечную память.

  1. Левая часть — движение, правая — огонь (плавающая кнопка)

Как и в первой схеме, движение здесь осуществляется перемещением пальца по левой половине экрана. Разница в том, что кнопка выстрела следует за вашим пальцем, которым вы прицеливаетесь на правой части. Это значит, что для выстрела вам не нужно убирать палец от экрана. Просто жмите «огонь», когда захватите цель.

  1. Левая часть — движение (фиксированная кнопка), правая часть — огонь (фиксированная кнопка)

Это гибридная версия первых двух схем. Здесь сохраняется статичная кнопка стрельбы, но прицеливаться можно по свайпу с любого другого места на экране. За движение отвечает зафиксированный на экране джойстик. Такой вариант удобен для тех, у кого длинные пальцы, или кто предпочитает использовать низкие настройки чувствительности без потери точности. Увеличенная площадь прицеливания позволяет делать более широкие движения.

Переключаясь вверху экрана между видом от первого и третьего лица, вы можете выбрать и настроить управление для каждого режима камеры. Например, плавающую кнопку выстрела можно оставить для режима «Бой насмерть» в игре от первого лица, либо для «Быстрого матча» от третьего лица.

Индивидуальная настройка

Неважно, какую схему вы выберете: у вас будет возможность настроить практически любую кнопку на экране. Делайте это исходя из личных предпочтений, размера руки и того, как вы держите телефон

Если вы уже играли в подобные мобильные игры, вам будет легче сразу настроить все по уже знакомому шаблону. Для начала просто нажмите кнопку «Настроить» у выбранной схемы.

Явление метастабильности.

До сих пор мы предполагали, что сигнал на входе триггера может принимать только два состояния: логический ноль и логическая
единица. Однако синхроимпульс может прийти в любой момент времени, в том числе и в момент смены состояния сигнала на входе
триггера.

Если синхросигнал попадёт точно на момент перехода входным сигналом порогового уровня, то триггер на некоторое время может
попасть в неустойчивое метастабильное состояние, при котором напряжение на его выходе будет находиться между уровнем
логического нуля и логической единицы. Это может привести к нарушению правильной работы цифрового устройства.

Состояние метастабильности триггера подобно неустойчивому состоянию шарика, находящегося на вершине конического холма.
Такая ситуация иллюстрируется рисунком 1. Обычно триггер не может долго находиться в состоянии метастабильности и быстро
возвращается в одно из стабильных состояний. Время нахождения в метастабильном состоянии зависит от уровня
шумов схемы и использованной технологии изготовления микросхем.

Временные параметры триггера в момент возникновения состояния метастабильности и выхода из этого состояния приведены на
рисунке 2. Время tSU (register setup time or tSU) на этом рисунке это минимальное время
перед синхроимпульсом, в течение которого логический уровень сигнала должен оставаться стабильным для того, чтобы избежать
метастабильности выхода триггера. Время tH (register hold time or tH) это минимально необходимое время
удержания стабильного сигнала на входе триггера для того, чтобы избежать метастабильности его выхода. Время состояния
метатастабильности случайно и зависит от многих параметров. На рисунке 2 оно обозначено tMET.

Вероятность того, что время метастабильности превысит заданную величину, экспоненциально уменьшается с
ростом времени, в течение которого выход триггера находится в метастабильном состояние.

где t — это коэффициент обратно пропорциональный коэффициенту усиления и полосе пропускания элементов,
входящих в состав триггера.

Склонность триггеров к метастабильности обычно оценивается величиной, обратной скорости отказов. Это значение выражается
как интервал времени между отказами. Его можно определить по формуле:

где t = tSU − tHfс — тактовая частота
    fd — частота с которой меняются входные данные

Для того чтобы можно было оценить эту величину, приведём таблицу для двух микросхем. Последняя строчка этой таблицы
эквивалентна времени метастабильности tMET = 5 нс.

Таблица 3КМОП

Условия измерения SN74ACT SN74ABT
fc = 33МГц, fd = 8МГц 8400 лет 8.1×109 лет
fc = 40МГц, fd = 10МГц 92 дня 1400 лет
fc = 50МГц, fd = 12МГц 2 часа

Метастабильное состояние не всегда приводит к неправильной работе цифрового устройства. Если время ожидания устройства
после прихода импульса синхронизации достаточно велико, то триггер может успеть перейти в устойчивое состояние, и мы даже
ничего не заметим. То есть если мы будем учитывать время метастабильности tmet то метастабильность никак не скажется на
работе остальной цифровой схемы.

Если же это время будет неприемлемым для работы схемы, то можно поставить два триггера последовательно, как это показано
на рисунке 3. Это снизит вероятность возникновения метастабильного состояния.

Для сравнения приведем MBTF для новой схемы. Сравнение производится тех же самых микросхем, что и в предыдущем примере.
Время метастабильности tMET = 5 нс для 50 МГц, tMET = 5 нс
для 67 МГц, tMET = 5 нс для 80 МГц.

Таблица 4.

Триггеры

Результаты операций, как и сами операнды, надо где-то как-то хранить. Для этого используются логические элементы, известные как триггеры.

Триггер
Логический элемент, способный хранить один разряд двоичного числа.

RS-триггер

Представляет собой простейший триггер. Имеет следующую схему:

RSQQ

По сути, состоит из двух элементов ИЛИ-НЕ, соединенных кольцом.

Имеет следующую таблицу истинности:

R S Q
Q
1 1
1
1 1 🕱

При подаче нулей на оба входа, хранится ранее установленное значение. При подаче 1 на вход S (Set), значение устанавливается в 1, при подаче 1 на вход R (Reset), значение сбрасывается в 0.

Подавать 1 на оба входа одновременно запрещено, поскольку в таком случае \(Q=\;\overline{Q}\; = 0\). При подаче после этого нулей на оба входа, состояние триггера не определено (зависит от внутренних характеристик элементов)

Комментарии

Описание и принцип работы

В широком смысле триггером (от английского trigger — спусковой крючок, запускающий механизм) называют любой импульс или событие, ставшее причиной чего-либо. Термин применяют в электронике, психологии, медицине, программировании и других областях деятельности. В создании микросхем и других устройств так называют элемент, который способен принимать одно из двух стойких состояний (0 или 1) и сохранять их в течение долгого времени.

Положение триггера зависит от получаемых им сигналов на прямом и инверсном выходах. Отличительной чертой устройства является то, что его переход из одной позиции в другую обусловлен не только получением внешних инструкций, поступающих от выбранной системы управления, но и посредством обратной связи. То есть текущее положение элемента зависит от предыстории его работы.

Триггеры могут сохранять свою память только при постоянном поступлении напряжения. Если его отключить, а затем снова подключить, устройство перейдёт в случайное состояние

Поэтому при конструировании устройства важно предусмотреть способ, которым он изначально будет вводиться в правильное положение

В основе любого триггера лежит схема, которая состоит из двух логических элементов типа И-НЕ либо ИЛИ-НЕ, имеющих друг с другом обратную положительную связь. Такой тип подключения позволяет системе иметь всего два возможных устойчивых состояния, из которых выбирается одно

Важной деталью является то, что после того как триггер перешёл в положение, он может сохранять его сколько угодно времени, до тех пор, пока не будет подан очередной управляющий сигнал

Другой характерной особенностью устройств является возможность мгновенного осуществления перехода от одного состояния в другое после получения соответствующей команды. Задержка настолько мала, что её можно не учитывать при проведении расчётов.

Число входов может быть разным и зависит от требуемых функций. Если подать сигнал одновременно на два из них, то он примет произвольную позицию после прекращения их поступления. По своим функциям входы делятся на несколько типов, которые входят в две большие группы: информационные и управляющие. Первые из них получают сигналы и запоминают их в виде информации, в то время как вторые разрешают или запрещают её запись, а также выполняют функцию синхронизации. На схемах они имеют следующие обозначения:

  • S — устанавливает триггер в состояние «1» на прямом выходе;
  • R — противоположен S, сбрасывает состояние обратно на «0»;
  • С — вход синхронизации;
  • D — принимает информацию для последующего занесения на триггер;
  • T — счётный вход.

Транзисторные схемы

Транзисторные схемы работают достаточно похожим образом, и строятся на основе полевых транзисторов с изолированным затвором, так же известные как МОП-транзисторы (MOSFET), выполняющих роль переключателя. Однако, критерием “истинности” или “ложности” всей схемы является не протекающий ток, а значение напряжения (условно “высокое” или “низкое”)

Принципы работы полевых транзисторов

Полевые транзисторы состоят из двух полупроводниковых терминалов p- или n-типа (называемых исток (Source) и сток (Drain)), помещенных в субстрат соответственно n- или p-типа. N-тип соответствует электронной, а p-тип – дырочной проводимости. Сам транзистор обозначается по типу терминалов.

Так же присутствуют два терминала, называемых база (base) и затвор (gate), которые, собственно, и обеспечивают управление транзистором.

При приложении напряжения между базой и затвором, электроны или дырки притягиваются к области затвора, создавая канал проводимости между истоком и стоком. Изменение электрического поля между базой и затвором изменяет сопротивление этого канала.

Встречаются МОП-транзисторы с собственным (или встроенным) (depletion mode transistor) и индуцированным (или инверсным) каналом (enhancement mode transistor). Встроенный канал означает, что при нулевом напряжении затвор-база, канал транзистора открыт (т.е. проводит ток); для закрытия канала нужно приложить к затвору напряжение определенной полярности. Канал приборов с индуцированным каналом закрыт (не проводит ток) при нулевом напряжении затвор-база; для открытия канала нужно приложить к затвору напряжение определенной полярности. Полярность напряжения определяется типом проводников в транзисторе (N- или P-тип).

СИЗБNPPЗСИБ
Схема и условное обозначение PMOS с индуцированным каналом
СИЗБPNN
Схема и условное обозначение NMOS с индуцированным каналом

Схема и условное обозначение PMOS с собственным каналом

Схема и условное обозначение NMOS с собственным каналом

Часто терминал базы подключают напрямую к истоку.

Реализация логических операций на МОП-транзисторах

Независимо от типа транзистора, он может быть “настроен” таким образом, чтобы либо переходить в “открытое” состояние при подаче высокого напряжения (соответствующего логической единице) на затвор, либо низкого (соответствующего логическому нулю), и в “закрытое” в противном случае. При проектировании логических схем, имеет значение только этот фактор.

В этом контексте, транзисторы, переходящие в “открытое” состояние при подаче логической единицы на затвор, называются прямыми, а в “закрытое” – инверсными. При проектировании логики, часто используются следующие обозначения:

Прямой МОП-транзистор

Инверсный МОП-транзистор

Как правило, прямые транзисторы реализуются на NMOS, а инверсные – на PMOS.

На основе этих двух типов строятся микросхемы типа CMOS (КМОП – комплементарная структура металл-оксид-полупроводник, она же COS-MOS), состоящие из симметрично расположенных p- и n-канальных полевых транзисторов. Использование симметричных схем позволяет значительно уменьшить ток активации схемы, и снизить энергопотребление.

Штрих Шеффера может быть реализован, например, так:

VccF = A | BAB
Штрих Шеффера на прямых транзисторах
VccAVccBF = A | B
CMOS-схема штриха Шеффера
Физическое устройство CMOS-схемы

Логические схемы

На основе логических элементов строятся логические схемы. На логических схемах не рассматривается внутреннее устройство элементов, поэтому все логические схемы полностью эквивалентны логическим формулам, которые их выражают.

Для обозначения логических элементов, соответствующих базовым логическим операциям используются следующие обозначения:

&
Конъюнктор, соответствует операции конъюнкции.
1
Дизъюнктор, соответствует операции дизъюнкции.

Инвертор, соответствует операции инверсии.

И-НЕ (NAND), соответствует штриху Шеффера.

ИЛИ-НЕ (NOR), соответствует стрелке Пирса.

Бизнес и финансы

БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумагиУправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги — контрольЦенные бумаги — оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудитМеталлургияНефтьСельское хозяйствоЭнергетикаАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьерОрганизация и управление производством

Ждущий мультивибратор (одновибратор)

Ждущий мультивибратор в отличие от автоколебательного на выходе формирует одиночный импульс под действием входного сигнала, причём длительность выходного импульса зависит от номиналов элементов обвязки операционного усилителя. Схема ждущего мультивибратора показана ниже

Схема ждущего мультивибратора (одновибратора) на операционном усилителе.

Ждущий мультивибратор состоит из операционного усилителя DA1, цепи ПОС на резисторах R4R5, цепи ООС VD1C2R3 и цепи запуска C1R1VD2.

Цикл работы ждущего мультивибратора можно условно разделить на три части: ждущий режим, переход из ждущего режима в состояние выдержки и непосредственно состояние выдержки. Рассмотрим цикл работы мультивибратора подробнее.

Ждущий режим является основной и наиболее устойчивой частью цикла работы данного типа мультивибратора, так как самопроизвольно он не может перейти в следующие части цикла работы ждущего мультивибратора. В данном состоянии на выходе мультивибратора присутствует положительное напряжение насыщения ОУ (UНАС+), которое через цепь ПОС R4R5 частично поступает на неинвертирующий вход ОУ, тем самым задавая пороговое напряжение переключения мультивибратора (UПП), которое определяется следующим выражением

На инвертирующем входе ОУ присутствует напряжение, которое задаётся диодом VD1 (в случае кремневого диода напряжение примерно равно 0,6 – 0,7 В), то есть меньше порога переключения мультивибратора. При данных условиях ждущий мультивибратор может находиться неограниченно долгое время (до тех пор, пока не поступит запускающий импульс).

Переход из ждущего режима в состояние выдержки, является следующей частью цикла работы ждущего мультивибратора и начинается после того, как на вход поступит импульс отрицательной полярности, амплитуда которого превысит двухкратное значение напряжения переключения ждущего мультивибратора. То есть минимальная амплитуда входного напряжения (UВХ min) должна быть равна

В этом случае напряжение порога переключения ждущего мультивибратора понизится и станет меньше, чем напряжение падения на диоде VD1. Далее произойдёт лавинообразный процесс переключения выходного напряжения и на выходе установится напряжение отрицательного насыщение ОУ (UНАС-) и ждущий мультивибратор перейдёт в состояние выдержки. При выборе номиналов элементов входной цепи C1 и R1 надо исходить из того, что конденсатор С1 должен полностью разрядиться за время действия входного импульса, то есть постоянная времени цепи C1R1 должна быть на порядок (в десять раз) меньше длительности входного импульса.

Заключительная часть цикла работы ждущего мультивибратора является состояние выдержки. В данном состоянии на неинвертирующий вход поступает часть напряжения с выхода мультивибратора, тем самым задавая пороговое напряжение перехода мультивибратора в ждущий режим. В тоже время выходное напряжение через цепь ООС C1R1 поступает на инвертирующий вход и открывает диод VD1, через который начинает разряжаться конденсатор С1. После разряда конденсатора С1 до 0 В происходит его зарядка через резистор R1 до напряжения перехода мультивибратора в ждущий режим. После чего схема переходит в исходное состояние и на выходе устанавливается напряжение положительного насыщения ОУ (UНАС+). Длительность состояния выдержки и непосредственно формируемого выходного импульса определяется временем зарядка конденсатора С1 через резистор R1 и в общем случае определяется следующим выражением

Так как ждущий мультивибратор имеет только одно устойчивое состояние, то за ним закрепилось название одновибратора.

Для того чтобы одновибратор вырабатывал положительные импульсы при положительных управляющих входных сигналах необходимо изменить полярность включения диодов VD1 и VD2.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации