Андрей Смирнов
Время чтения: ~21 мин.
Просмотров: 0

Какие генераторы устанавливали на мтз раньше и что изменилось сейчас

Содержание полезных элементов (таблица)

Глициния растение. Описание и особенности, виды и сорта, как и где сажать глицинию

Применяемость

Схема подключения генератора МТЗ

Продукция Минского тракторного завода повсеместно используется в строительной, коммунальной и сельскохозяйственной сфере, что обусловлено её надежностью и отличными характеристиками

Генератор на МТЗ-80 представляется важной частью конструкции, служит для трансформации вращательной энергии коленвала в электрический аналог

Схема зарядки МТЗ-80

Данная схема цветная с описанием показывает, из каких элементов состоит система зарядки трактора МТЗ-80.

  1. Генератор, который является основным источником питания.
  2. Батареи аккумуляторные, свинцово-кислотные – выполняют роль резервного источника питания тракторного двигателя.
  3. Лампа индикации, которая загорается при том случае, когда при включении замка зажигания генератор не вырабатывает электрический ток.
  4. Блок предохранителей, защищающий электрическую цепь от короткого замыкания.

Генератор и АКБ подключаются «плюсовым» проводом, а «минус» выводится на металлический корпус.

Ветрогенератор из тракторного генератора с однолопастным винтом

Умелец сделал из тракторного генератора Г700.04.01 вертикальный ветрогенератор своими руками для зарядки своих аккумуляторов снабдив его винтом с одной лопастью.

По задумке автора, ветрогенератором для зарядки аккумуляторных батарей выступает тракторный генератор.

Характеристики генератора Г700.04.01:• Номинальное напряжение – 14V.• Номинальный ток – 50А.• Номинальная частота вращения – 5000 об/мин.• Максимальная частота вращения – 6000 об/мин.• Вес – 5,4 кг.

Тракторный генератор является высокооборотным агрегатом, им выдается зарядка для аккумулятора при больше чем 1000 об/мин, поэтому без переоборудования на ветряк он не подходит. Чтобы генератор был способен заряжать батарею в условиях низких оборотов, его пришлось дорабатывать.

Мастер перемотал статор – 80 витков для каждой катушки, используя провод 0,8 мм. Катушку возбуждения электромагнита автор перемотал и увеличил на 250 витков, применив такой же провод. Он дополнительно использовал 200 м провода, чтобы перемотать статор и домотать катушку.

Затем умелец сварил крепление для генератора, используя профтрубу, изготовил защиту от сильного ветра. Она выполнена в виде складывающегося хвостовика, одевающегося на шкворень.

Выбирая винт, автор решил в первую очередь создать конструкцию с двумя лопастями, диаметр винта – 1360 мм. Для лопастей использована алюминиевая труба с сечением 110 мм, которые были раскатаны. Длина каждой из них – 630 мм.

Мастер установил ветрогенератор на 5-метровую мачту. Он отбросил идею с токосъемными кольцами и пустил провод генератора внутри в трубе мачты.

Для фиксации мачты на высоте 4 м использованы тросовые растяжки.

Ветрогенератор начинает заряжать аккумулятор, если появляется скорость ветра достигает 3,5 м/с.4 м/с – 300 об/мин.7 м/с – 900 об/мин, генератор обеспечивает порядка 150 Ватт.15 м/с – скорость вращения винта достигает 1500 об/мин, ветрогенератор выдает порядка 250 ватт. Эти параметры достаточны для того, чтобы зарядить автомобильный аккумулятор.

Для усовершенствования своей установки автор увеличивает обороты – он переделывает двухлопастный винт в винт с одной лопастью.Винт с одной лопастью обладает таким преимуществом как высокий коэффициент использования энергии ветра. При одной и той же скорости ветра винт с одной лопастью вращается вдвое быстрее, чем трехлопастный винт.

Однако для изготовления однолопастного винта нужно провести непростую операцию – его балансировку. В противном случае из-за сильных вибраций подшипник генератора разрушится, преждевременно выйдет из строя.

Местом фиксации такого винта выступает трубка, на которой предусмотрен противовес. Работа конструкции заключается в принципе коромысла.Крепление под балку лопасти автор приварил на генераторный шкив, в балке просверлил отверстие для шпильки М6. В крепление он вставил два ограничителя в виде шпилек, чтобы винт не задевал мачту.

На фото – крепление винта на шпильке М6, отклонение винта от оси может составлять 15 градусов.

Во время вращения однолопастный винт может отклоняться от оси. Таким образом он мягче реагирует на повороты установки.

В случае с ураганным ветром хвостовик происходит поворот хвостовика, он вырывает винт из потока воздуха.

Автор провел испытания конструкции и получил приличные результаты. В случае правильной балансировки винта вал генератора вращается существенно быстрее. В итоге генератором вырабатывается больше электроэнергии, даже если дует слабый ветер.

Неисправности генератора трактора МТЗ-82

Если при номинальной частоте вращения коленчатого вала дизеля амперметр показывает разрядный ток, это указывает на слабое натяжение ремня генератора, обрыв проводов в цепи питания обмотки возбуждения, окисление зажимов под-соединительных проводов.

Данная неисправность может быть также следствием межвиткового замыкания или обрыва витков в обмотке возбуждения, замыкания обмотки статора на корпус, пробоя диодов обратной или прямой полярности выпрямителя.

На большой зарядный ток может оказывать влияние неисправность аккумуляторной батареи при коротком замыкании пластин, вследствие чего уменьшается внутреннее сопротивление аккумулятора.

Шум и стуки в генераторе указывают на ослабление затяжки гайки крепления шкива привода генератора, разрушение шарикоподшипников или износ их посадочных мест, в результате чего ротор задевает за статор.

Для проверки генератора 464.3701 на тракторе включают потребители электроэнергии, устанавливают частоту вращения коленчатого вала дизеля, близкую к номинальной, подключают вольтамперметр КИ-1093 между выводом «+» и незакрашенным местом корпуса генератора (рис. 2.2.1) и, плавно увеличивая ток нагрузки до 30 А, замеряют величину напряжения, которая должна быть не менее 12,5 В.

Рис. 2.2.1. Схема проверки напряжения отдачи генератора под нагрузкой на тракторе:
1 — генератор; 2 — вольтамперметр КИ-1003

Если напряжение генератора значительно отличается от номинального или отсутствует при отключении аккумуляторной батареи, генератор снимают для проверки и замены. Проверку генератора проводят следующим образом.

Предварительно проверяют исправность основных элементов генератора с помощью контрольной лампы напряжением 12 В,

Для этого снимают заднюю пластмассовую крышку и интегральное устройство (ИУ), освобождают выводы катушки возбуждения и дополнительного выпрямителя с болтов панели выводов. Затем приступают к проверкам на отсутствие короткого замыкания в диодах или между обмотками и корпусом генератора (рис. 2.2.2).

Рис. 2.2.2. Схемы проверки генератора на отсутствие короткого замыкания
а — диодов выпрямительного блока; б — обмотки статора и диодов обратной полярности; в — диодов прямой полярности; г — диодов дополнительного выпрямителя; д — обмотки возбуждения на корпус генератора;
1 — корпус генератора; 2 — клемма «+»; 3 — клемма «Ш»; 4 — выводы фаз выпрямительного блока; 5 — аккумуляторная батарея; 6 — клемма «Д»; 7 — клемма вывода конца обмотки возбуждения; 8 — клемма вывода начала обмотки возбуждения; 9 — контрольная лампа

В случае короткого замыкания диодов, обмотки или пробоя на корпус контрольная лампа должна загораться. При дефектах изоляции обмоток и неисправностях диодов генератор заменяют. Испытания генератора проводят на контрольно-испытательных стендах КИ-968 или 532М.

Вначале проверяют напряжение, вырабатываемое генератором без нагрузки. Оно должно быть не менее 12,5 В при частоте вращения ротора не более 1400 мин-1. Затем контролируют напряжение, вырабатываемое генератором под нагрузкой, при токе нагрузки 36 А и частоте вращения ротора 3000 мин-1. Оно также должно быть не менее 12,5 В.

Чтобы проверить интегральное устройство, ток нагрузки уменьшают до 5 А, а частоту вращения ротора устанавливают 3000 ± 100 мин-1. При установке переключателя посезонной регулировки (ППР) в положение «Л» (лето) напряжение, вырабатываемое генераторам, должно быть 13,2—14,1 В. При установке ППР в положение «З» (зима) напряжение должно быть 14,3—15,2 В. В случае отклонений от указанных пределов интегральное устройство заменяют.

Прайс-Лист

ПРОФИЛАКТИЧЕСКОЕ ОБСЛУЖИВАНИЕ ГЕНЕРАТОРА МТЗ

Генераторы, устанавливаемые на тракторы МТЗ, имеют простую и надежную конструкцию, которая позволяет им работать длительное время в тяжелых условиях, таких как запыленность, воздействие высоких температур, влаги, длительная работа на повышенных оборотах.

Систематическое профилактическое обслуживание необходимо для бесперебойной работы устройства. При обслуживании необходимо проверить состояние креплений генератора и силу натяжения приводного ремня. Прогиб ремня при усилии 3 кг/см не должен превышать 3 см, в противном случае ремень следует подтянуть. Ремень не должен иметь надрывов, трещин, и других следов повреждения.

Электрические соединения проверяются на качество крепления и отсутствие следов окисления. При наличии окисления выводных клемм следует отсоединить аккумуляторную батарею, снять клеммы с генератора и зачистить. Клеммы, которые находятся под напряжением, должны иметь защитные колпачки, исключающие воздействие факторов окружающей среды и предотвращающие короткое замыкание.

Исправность устройства проверяется при каждом пуске двигателя с помощью контрольной лампы заряда АКБ. При включении зажигания лампа должна гореть, и погаснуть, как только двигатель запущен. Допускается, что лампа гаснет только с увеличением частоты вращения коленчатого вала до 1400 оборотов в минуту, так как некоторые модели имеют частоту оборотов возбуждения выше оборотов холостого хода двигателя.

Если контрольная лампа не гаснет или измерительные приборы на панели, такие как амперметр или вольтметр, показывают разряд (для вольтметра это значения ниже 12,5 вольт), необходимо произвести диагностику генератора. Делается это только на неработающем двигателе.

Устройство генератора

Устройство автомобильного генератора подразумевает наличие собственного выпрямителя и регулирующей схемы. Генерирующая часть генератора с помощью неподвижной обмотки (статора) вырабатывает трёхфазный переменный ток, который далее выпрямляется серией из шести больших диодов и уже постоянный ток заряжает аккумулятор. Переменный ток индуцируется вращающимся магнитным полем обмотки (вокруг обмотки возбуждения или ротора). Далее ток через щётки и кольца скольжения подаётся на электронную схему.

Устройство генератора: 1.Гайка. 2.Шайба. 3.Шкив. 4.Передняя крышка. 5.Дистанционное кольцо. 6.Ротор. 7.Статор. 8.Задняя крышка. 9.Кожух. 10.Прокладка. 11.Защитная втулка. 12.Выпрямительный блок с конденсатором. 13.Щеткодержатель с регулятором напряжения.

Располагается генератор в передней части двигателя автомобиля и запускается с помощью коленчатого вала. Схема подключения и принцип работы генератора автомобиля одинаковый для любых автомобилей. Есть конечно некоторые отличия, но они, как правило, связаны с качеством изготовленного товара, мощностью и компоновкой узлов в моторе. Во всех современных автомобилях устанавливают генераторные установки переменного тока, которые включают не только сам генератор, но и регулятор напряжения. Регулятор равносильно распределяет силу тока в обмотке возбуждения, именно за счет этого и происходит колебание мощности самой генераторной установки в тот момент, когда напряжение на силовых клеммах выхода остается неизменным.

Новые автомобили чаще всего оборудованы электронным блоком на регуляторе напряжения, поэтому бортовой компьютер может контролировать величину нагрузки на генераторную установку. В свою очередь на гибридных автомобилях генератор выполняет работу стартер-генератора, аналогичная схема используется и в других конструкциях системы стоп-старт.

Принцип работы генератора авто

Схема подключения генератора ВАЗ 2110-2115

Схема подключения генератора переменного тока включает такие составляющие:

  1. Аккумулятор.
  2. Генератор.
  3. Блок предохранителя.
  4. Ключ зажигания.
  5. Приборная панель.
  6. Выпрямительный блок и добавочные диоды.

Принцип работы достаточно простой, при включении зажигания плюс через замок зажигания идет через блок предохранителей, лампочку, диодный мост и выходит через резистор на минус. Когда лампочка на приборной панели загорелась, далее плюс идет на генератор (на обмотку возбуждения), далее в процессе запуска двигателя шкив начинает вращаться, также вращается якорь, за счет электромагнитной индукции вырабатывается электродвижущая сила и появляется переменный ток.

Наиболее опасным для генератора является замыкание пластин теплоотводов, соединенных с «массой» и выводом «+» генератора случайно попавшими между ними металлическими предметами или проводящими мостиками, образованными загрязнением.

Далее в выпрямительный блок через синусоиду в левое плечо диод пропускает плюс, а в правое минус. Добавочные диоды на лампочку отсекают минусы и получаются только плюсы, далее он идет на узел приборной панели, а диод, который там стоит он пропускает только минус, в итоге лампочка гаснет и плюс тогда идет через резистор и выходит на минус.

Принцип работы автомобильного генератора постоянного, можно объяснить так: через обмотку возбуждения начинает течь небольшой постоянный ток, который регулируется управляющим блоком и поддерживается им на уровне чуть больше 14 В. Большинство генераторов в автомобиле способны вырабатывать как минимум 45 ампер. Генератор работает на 3000 оборотах в минуту и выше — если посмотреть на соотношение размеров ремней вентиляторов для шкивов, то оно по отношению к частоте двигателя составит два или три к одному.

Во избежание этого пластины и другие части выпрямителя генераторов частично или полностью покрывают изоляционным слоем. В монолитную конструкцию выпрямительного блока теплоотводы объединяются в основном монтажными платами из изоляционного материала, армированными соединительными шинками.

Далее рассмотрим схему подключения автомобильного генератора на примере автомобиля ВАЗ-2107.

Торговые марки

Автокаталог

2.7. Кварцевая стабилизация частоты

Стабильность частоты автогенератора, как мы видели, определяется главным образом качеством его колебательной системы — её эталонными свойствами и добротностью. У обычного электрического колебательного контура эталонные свойства и добротность недостаточны для обеспечения необходимых норм по стабильности частоты. Стабильность частоты автогенераторов с электрическими колебательными контурами как правило не лучше 10 — 4 . В тех случаях, когда требуется более высокая стабильность, используют кварцевую колебательную систему. Использование механических колебаний кварца для получения электрических колебаний возможно благодаря прямому и обратному пьезоэлектрическим эффектам. Прямой пьезоэффект состоит в том, что механические деформации сжатия и растяжения пластинки кварца сопровождается появлением электрических зарядов на её гранях. Благодаря обратному пьезоэффекту у пластинки кварца, помещенной в электрическое поле, возникают деформации сжатия и растяжения и на её гранях появляются заряды за счет прямого пьезоэффекта. Будучи механической колебательной системой с распределёнными параметрами пластинка кварца подобно, например, электрической длинной линии обладает множеством собственных частот.

2.7.1. Электрическая эквивалентная схема кварца

Благодаря явлению пьезоэлектричества пластинку кварца в электрической схеме можно заменить некоторым колебательным контуром с сосредоточенными параметрами. Упрощенная эквивалентная электрическая схема кварцевой пластины (резонатора) изображена на рис. 2.15а, где С- её статическая ёмкость (диэлектрическая проницаемость кварца e =4,6), к которой в реальных схемах ещё добавляется паразитная ёмкость кварцедержателя; Сq , Lq и rq — пьезоэлектрические эквивалентные параметры. Порядок их величин (при используемых на коротких волнах механических колебаниях пластины по толщине): С- единицы пФ, Сq -сотые доли пФ, Lq — десятые доли Гн , rq— от единиц до ста Ом. Добротность кварцевых резонаторов достигает сотен тысяч. Эталонность кварца весьма высока. Кроме того, благодаря малым размерам кварцевой пластины её легко термостатировать и т.п. Изображенная на рис.2.15а колебательная система имеет два резонанса — последовательный при w= wq (собственный резонанс кварца) и параллельный при w=w (колебательного контура в целом).

Рис.2.15

Разность между частотами последовательного и параллельного резонансов с уменьшением добротности уменьшается. При Q= 2/p , где p= Cq/C, эти частоты совпадают. При большой добротности отношение (w-wq)/wq @p/2 @2×10-3 На рис. 2.15б, изображены кривые зависимостей реактивного Xq и активного Rq сопротивлений, а также фазового угла jэ эквивалентной схемы кварца от относительной расстройки частоты Dw/w. Из графиков видно, что в интервале между частотами последовательного и параллельного резонансов производная ¶jэ/¶w < 0, как у параллельного колебательного контура, а эквивалентное сопротивление кварца Xq здесь имеет индуктивный характер.

2.7.2. Схемы кварцевых генераторов

Различают два класса схем кварцевых генераторов. К первому классу относятся так называемые осцилляторные схемы, в которых генератор работает приблизительно на частоте параллельного резонанса кварцевого контура, так как только здесь получается необходимый для самовозбуждения сдвиг фаз и обеспечивается устойчивость автоколебаний. В осцилляторных схемах кварц включают в те участки обобщенной трехточечечной схемы генератора, где для поддержания автоколебаний эквивалентное сопротивление кварца должно иметь индуктивный характер (рис2.16).

Рис.2.16

Наличие колебаний в осцилляторной схеме всегда служит гарантией того, что она действует благодаря пьезоэффекту кварца. Следует отметить, что частота автоколебаний в этих схемах очень мало отличается от частоты параллельного резонанса кварцевого контура, поскольку ширина кривой полного сопротивления этого контура, которая пропорциональна затуханию кварца dq=1/Qq , значительно меньше ширины расстройки между частотами wq и w , поскольку dq может рассматриваться как величина второго порядка малости относительно величины р=Сq/C.

В схемах, относящихся ко второму классу, кварц возбуждается на чacтоте последовательного резонанса, эти схемы обладают большей стабильностью. Примеры этих схем показаны на рис. 2.17.

Рис.2.17

2.7.3. Кварцевая стабилизация частоты в диапазоне волн

Одним из существенных недостатков кварцевого генератора является его неспособность работать в плавном диапазоне волн, поскольку изменить плавно собственную частоту кварцевой пластины невозможно. Для стабилизации частоты в плавном диапазоне волн используется интерполяционный метод, структурная схема которого изображена на рис.2.18. Сущность его сводится к следующему.

Колебания кварцевого генератора, частота которого fкв, и колебания с частотой fг диапазонного бескварцевого генератора, называемого интерполяционным , подаются на смеситель. После смесителя установлен селектор, который выделяет колебания требуемой рабочей частоты f = fкв + fг, или f= fкв — fг. Нетрудно показать, что нестабильность рабочей частоты, которая складывается из нестабильности кварцевого генератора и нестабильности интерполяционного генератора, тем ближе к нестабильности кварцевого генератора чем частота кварцевого генератора больше частоты интерполяционного генератора. Отношение N=fкв/fг носит название интерполяционного числа. Величина N обычно не превышает 20 из-за трудностей построения схемы селектора.

Рис.2.18

РАЗДЕЛЫ

2.3. Устойчивость фазы (частоты)

Условие баланса фаз в автогенераторе, как было показано выше, определяется выражением:

jэ + js + jк =0 (2mπ) (2.4)

Поскольку фазовые углы js и jк малы и при малых изменениях частоты меняются очень мало, то для простоты рассуждений при рассмотрении устойчивости фазы можно принять их равными нулю. Тогда условие баланса фаз примет вид:

jэ =0 . ( 2.4’)

При этом частота автоколебаний в стационарном режиме равна резонансной частоте контура.

Фаза (частота) автоколебаний будет устойчива в том случае, когда при малом случайном изменении частоты w фазовый угол jэ будет изменяться так, чтобы частота автоколебаний возвратилась к своему значению при состоянии равновесия фаз.

Можно показать, что устойчивость фазы (частоты) автогенератора обеспечивается его колебательным контуром. Математически условие устойчивости фазы (частоты) автогенератора выражается формулой:

<0 (2.10)

Это можно пояснить следующим образом. При изменении частоты, например, при w < wраб,первая гармоника анодного тока будет отставать от напряжения на контуре (рис.2.5). Однако, из рис.2.5 видно, что напряжение обратной связи , синфазное с напряжением на контуре , опережает напряжение, поэтому фазовый сдвиг между и будет уменьшаться.

Рис 2.5.

Итак, устойчивость амплитуды колебаний в автогенераторе определяется лампой (нелинейным характером её внутреннего сопротивления и зависимостью его величины от электронного режима лампы), а устойчивость их частоты (фазы) — колебательным контуром.

Схема подключения генератора на ВАЗ 2107

Схема зарядки ВАЗ 2107 зависит от того, какой применяется тип генератора. Чтобы подзарядить аккумуляторную батарею на таких авто, как: ВАЗ-2107, ВАЗ-2104, ВАЗ-2105, которые стоят на карбюраторном двигателе, будет необходим генератор типа Г-222 или его аналог с максимальным током отдачи в 55А. В свою очередь автомобили ВАЗ-2107 у которых инжекторный двигатель используют генератор 5142.3771 или его прототип, который называется генератором повышенной энергии, с максимальным током отдачи 80-90А. Также можно устанавливать более мощные генераторы с током отдачи до 100А. Абсолютно во все виды генераторов переменного тока встраиваются выпрямительные блоки и регуляторы напряжения, они, как правило, изготовлены в одном корпусе со щетками либо съемные и крепятся на самом корпусе.

Схема зарядки ВАЗ 2107 имеет незначительные отличия в зависимости от года изготовления автомобиля. Самым главным отличием есть наличие или отсутствие контрольной лампы заряда, которая расположена на панели приборов, также способ ее подключения и наличие либо отсутствие вольтметра. Такие схемы в основном используются на карбюраторных автомобилях, тогда как на авто с инжекторными двигателями схема не меняется, она идентична с теми автомобилями, которые изготовлялись ранее.

Обозначения генераторных установок:

  1. “Плюс” силового выпрямителя: “+”, В, 30, В+, ВАТ.
  2. “Масса”: “-”, D-, 31, B-, M, E, GRD.
  3. Вывод обмотки возбуждения: Ш, 67, DF, F, EXC, E, FLD.
  4. Вывод для соединения с лампой контроля исправности: D, D+, 61, L, WL, IND.
  5. Вывод фазы: ~, W, R, STА.
  6. Вывод нулевой точки обмотки статора: 0, МР.
  7. Вывод регулятора напряжения для подсоединения его в бортовую сеть, обычно к “+” аккумуляторной батареи: Б, 15, S.
  8. Вывод регулятора напряжения для питания его от выключателя зажигания: IG.
  9. Вывод регулятора напряжения для соединения его с бортовым компьютером: FR, F.

Схема генератора ВАЗ-2107 тип 37.3701

  1. Аккумуляторная батарея.
  2. Генератор.
  3. Регулятор напряжения.
  4. Монтажный блок.
  5. Выключатель зажигания.
  6. Вольтметр.
  7. Контрольная лампа заряда аккумуляторной батареи.

При включении зажигания плюс от замка идет к предохранителю № 10, а затем уже поступает на реле контрольной лампы заряда аккумуляторной батареи, потом идет к контакту и на вывод катушки. Второй вывод катушки взаимодействует с центральным выводом стартера, где соединяются все три обмотки. Если контакты реле замыкаются, то и контрольная лампа горит. При запуске двигателя генератор вырабатывает ток и на обмотках появляется переменное напряжение 7В. Через катушку реле проходит ток и якорь начинает притягиваться, при этом контакты размыкаются. Генератор № 15 через предохранитель № 9 пропускает ток. Аналогично через генератор напряжения щетки получает питание обмотка возбуждения.

На тракторы ставятся индукторные генераторы, которые лучше приспособлены к тяжелым условиям работы.

Пыль, грязь, плохое охлаждение (малая скорость во время работы)

Практически непрерывная работа в течение рабочего дня

Индукторный генератор отличается тем, что его ротор не имеет обмотки возбуждения и является просто вращающимся магнитопроводом. Ротор, при вращении создает изменяющееся магнитное поле, и в обмотке индуктируется ЭДС.

В генераторе вставлена неподвижная обмотка возбуждения, через нее проходит постоянный ток, от генератора, этот ток создает сильный магнитный поток, который замыкается через вращающийся ротор. 

Выводы обмотки возбуждения включаются так, чтобы ток возбуждения проходил в направлении намагничивания ротора, который содержит постоянные магниты. Если перепутать выводы обмотки возбуждения, ток возбуждения будет размагничивать ротор и генератор практически престанет работать.

То, что обмотка возбуждения не вращается вместе с ротором, дает важное преимущество – не нужны щетки, для передачи тока во вращающийся ротор. Щетки изнашиваются, плохой контакт под ними сильно снижает надежность генератора, поэтому индукторный, бесщеточный генератор получается более надежным

Однополюсная магнитная схема и большие магнитные зазоры в системе возбуждения, снижают КПД индукторного генератора по сравнению с классическим автомобильным генератором, где обмотка возбуждения внутри ротора и ток в нее подается через щетки.

Снижение КПД приводит в ухудшению массогабаритных параметров, но для тракторов и тяжелых автомобилей это менее важное качество, чем надежность и долговечность. В обмотке индукторного генератора рождается переменная ЭДС, поэтому, на выходе обмотки необходим выпрямитель – диодный мост

В зависимости от схемы генератора может применяться диодный мост трехфазный и пятифазный, с дополнительными диодами и без дополнительных диодов

В обмотке индукторного генератора рождается переменная ЭДС, поэтому, на выходе обмотки необходим выпрямитель – диодный мост. В зависимости от схемы генератора может применяться диодный мост трехфазный и пятифазный, с дополнительными диодами и без дополнительных диодов.

Важным требованием к тракторным генераторам является то, что они должны работать как с аккумулятором, так и в отсутствии аккумулятора. Например, если двигатель заводится пускачем, без электростартера, то аккумулятор становится не нужен или необязателен.

Обычный автомобильный генератор всегда возбуждается от аккумулятора, а в тракторном генераторе должно быть предусмотрено возбуждение без аккумулятора. Для надежного возбуждения генератора, ротор имеет остаточный магнетизм, а в регуляторе напряжения предусмотрены соответствующие изменения в схеме, облегчающие самовозбуждение.

Генератор 46.3701 Выполнен по схеме с пятифазной обмоткой,

соответственно с пятифазным диодным мостом с дополнительными диодами.

Пятифазная схема дает возможность получить более качественное выпрямленное напряжение, то есть, с меньшими пульсациями. Это актуально при отсутствии аккумулятора, который как фильтр сглаживает пульсации выпрямленного напряжения.

Применение схемы с дополнительными диодами оправдано тем, что не нужна внешняя цепь возбуждения, она замыкается внутри генератора.  Кроме того, если есть аккумулятор, питание обмотки возбуждения от дополнительных диодов, исключает случайную разрядку аккумулятора через обмотку возбуждения при включенном питании и неработающем двигателе.

Посмотреть аналоги:

Устройство и принцип работы генератора

Прежде чем выяснить размер ремня генератора, необходимо изучить этот элемент, его конструкцию и принцип работы более подробно. Несмотря на то что на тракторы МТЗ устанавливались различные виды генераторов, они абсолютно идентичны по своим рабочим показателям и особенностям.

Данный элемент имеет идентификационный номер, который может варьироваться и зависит от используемой модификации:

Для его корректной работы необходимым требованием представляется наличие постоянного тока. Конструкция генератора предполагает прохождение тока через выпрямитель с тремя фазами, что позволяет трансформировать его из переменного в постоянный.

Характеристики генератора обусловлены работой его основных элементов, в роли которых выступают статор и ротор. Первый производится из листовой стали, а также трехфазной катушки, закрепленной на специальном выступе. Ротор является звездообразным элементом, имеющим 6 углов, устанавливается на вал. Принцип работы крайне прост: с помощью клинового ремня вращение коленвала передается на генераторный шкив. Из-за вращательных движений роторного механизма создается электромагнитное поле, которое под действием обмоток приводит к появлению тока, проходящего через выпрямитель.

Основные элементы

Планируя купить генератор на МТЗ 82 для его последующей установки, необходимо более подробно ознакомиться с его конструкцией. Как было сказано ранее, её основу составляет статор и ротор, однако есть и множество других элементов, за счет которых обеспечивается корректная работа агрегата. Среди них упоминания заслуживает:

  • передняя, задняя крышка, а также защита регулятора;
  • выпрямитель, изолятор, катушка и вентилятор;
  • регулировочные и крепежные элементы;
  • втулки роторные и распорные.

Зная, из каких элементов состоит конструкция подобного устройства, владельцу трактора МТЗ будет значительно проще самостоятельно установить его или выполнит ремонт, что позволит сократить затраты на услуги специалиста.

Основные элементы конструкции

Генераторы, установленные на двигатели внутреннего сгорания, имеют в большинстве случаев схожую конструкцию. В состав любого устройства входят такие элементы, как:

  • Статор. По сути, статор является корпусом. Помимо несущей функции, на внутренних стенках статора расположены обмотки. Статор собирается из тонких стальных пластин. Обмотка статора является трехфазной, каждая фаза состоит из трех медных обмоток, которые соединяются между собой последовательно. Сами фазы соединяются по схеме «треугольник». Концы фаз присоединяются к выпрямителю тока, который часто называют «диодный мост».
  • Ротор. Вращающаяся деталь. Выполнен в виде стального вала, на котором набраны тонкие пластины из электротехнической стали. В генераторах тракторов МТЗ форма пластин образует шестиконечную звезду. Вал размещен внутри статора, закреплен на подшипниках в передней и задней крышках. На передней части вала закреплен шкив под приводной ремень. Именно за счет вращения ротора в статоре возникает электромагнитное поле, которое создает энергию для питания потребителей и зарядки аккумуляторной батареи.
  • Выпрямитель тока. Предназначен для преобразования переменного тока, который возникает от взаимодействия электромагнитных полей статора и ротора, в постоянный ток, которым питаются все потребители бортовой системы, и который необходим аккумулятору для зарядки. Выпрямитель выполнен в виде корпуса и пластины, в зависимости от модели, один из этих элементов является теплоотводом. На этих элементах размещаются диоды, которые последовательно соединяются с обмотками статора и выводят напряжение на клемму «+» или «В».
  • Реле-регулятор. Предназначено для поддержания постоянного напряжения. В более ранних электрических схемах тракторов реле-регулятор было выполнено в виде отдельного блока, подключенного к клеммам и к массе. В современных моделях встречается реле-регулятор транзисторного типа, совмещенное со щеточным узлом и установленное непосредственно на генератор. Некоторые модификации регуляторов напряжения имеют возможность сезонной регулировки напряжения, изменяя диапазон тока в пределах 0,8-1,2 Вольт.
  • Передняя и задняя крышки. Являются опорой ротора, который установлен на подшипниках, запрессованных в отливки крышек. Также на передней или задней крышке, в зависимости от модели установлен блок выпрямителя тока. На крышках отлиты монтажные проушины для крепления генератора к двигателю и регулировки натяжения приводного ремня. Как правило, крышки имеют отверстия для отвода тепла из генератора.

Ветрогенератор из магнето

Магнето имеет несколько иную конструкцию, чем тракторный генератор. Оно оснащено двумя обмотками, низкого и высокого напряжения. Вторая обмотка не нужна, так как вольтаж, который она способна выдавать, не подойдет для ветряка. Небольшое усиление скорости ветра вызовет резкий скачок напряжения, что может вывести из строя потребители или промежуточное оборудование. Поэтому вторичную обмотку демонтируют, а первичную перематывают на большую мощность, чтобы устройство способно было выдавать результат на низких оборотах.

Кроме этого, понадобится исключить участие прерывателя. Здесь действуют двумя методами:

  • физический демонтаж кулачка прерывателя;
  • установка между контактами замыкающей перемычки, обеспечивающей постоянное соединение.
Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации