Андрей Смирнов
Время чтения: ~18 мин.
Просмотров: 0

Bk1198 микросхема схема включения

Программирование Arduino

Микросхема Si в этом проекте является ведомым устройство I2C, имеющим фиксированный адрес 0x11; при этом ведущим устройством (мастером) является плата Arduino. Однако скорость обмена информацией по I2C у этой микросхемы относительно медленная: максимальная поддерживаемая скорость 50 кГц. Кроме того, во время процедуры включения питания скорость не должна превышать 10 кГц. Чтобы удовлетворить эти требования, мы должны явно установить у Arduino скорость I2C, которая, как правило, слишком велика для Si4844-A10. К счастью, благодаря большому количеству документации по функциям I2C Arduino, мы можем легко выполнить необходимые изменения.

В принципе, скорость I2C для наших целей определяется в программном обеспечении Arduino двумя переменными. Эти переменные – это и . Биты 0 и 1 управляют предделителем, который работает со значением для установки скорости I2C. Скорость (тактовая частота) передачи по I2C рассчитывается по формуле:

Частота = Тактовая частота процессора / (16 + (2 * () * (предделитель))

Arduino Pro mini 3,3В работает на частоте 8 МГц. Чтобы установить скорость I2C на 10 кГц, мы используем значение 98 и установим предделитель в значение 4 (путем установки в 1 только бита 0 ). Таким образом,

8 000 000 / (16 + (2 * 98 * 4 )) = 10 000 или 10 кГц

Чтобы установить скорость I2C на 50 кГц, мы используем значение 18 и установим предделитель в значение 4 (путем установки в 1 только бита 0 ). Таким образом,

8 000 000 / (16 + (2 * 18 * 4)) = 50 000 или 50 кГц

Для более подробной информации смотрите документацию библиотеки для Arduino. Суть в том, что мы можем выполнить изменение скорости I2C всего парой строк кода, что вы можете увидеть в тестовой программе.

Еще один важный момент, связанный с программирование, заключается в том, что нам в коде нужно использовать подпрограмму внешнего прерывания. Мы используем на Arduino, и, когда Si4844-A10 установит уровень на этом выводе в 1, выполнится простая функция, которая «привязана» к этому прерыванию. Всё, что делает эта функция, это изменяет значение переменной флага, которая может быть проверена и изменена в других частях программы. Si4844-A10 будет запускать прерывания (т.е. подавать уровень логической единицы на вывод INT) при определенных условиях, в основном в случае изменения сопротивления потенциометра настройки. Так Si4844-A10 сообщает Arduino, что вы повернули ручку настройки, и что необходимо обновить данные на дисплее.

Стереодекодер

Принципиальная схема стереодекодера приведена на рис. 4. Он выполнен на микросхеме TDA7040T — стереодекодере с пилот-тоном.

Рис. 4. Принципиальная схема стереодекодера.

Микросхема изготавливается в миниатюрном корпусе для поверхностного монтажа. В качестве стереоусилителя звуковой частоты применена микросхема КР174УН23, желательно использовать ее малогабаритный аналог в корпусе для поверхностного монтажа КФ174УН2301 .

Существенным преимуществом этой микросхемы перед TDA7050T являются повышенная выходная мощность, что позволяет подключать динамическую головку, и возможность регулирования громкости по двум каналам одним переменным резистором с линейной характеристикой.

Комплексный стереосигнал с вывода 2 микросхемы приемника через корректирующую цепь R1, С1, определяющую тембр звучания и качество разделения каналов, поступает на вход стереодекодера — вывод 8 микросхемы DA1. Резистором R5 устанавливают режим работы опорного генератора.

Замыканием переключателя SA1 стереодекодер отключается. При отсутствии КСС напряжение с вывода 7 поддерживает транзистор VТ1 в открытом состоянии, который шунтирует светодиод VD1. При появлении КСС напряжение уменьшается, транзистор VТ1 закрывается, светодиод VD1 начинает светиться, сигнализируя о режиме “Стерео”.

Декодированные сигналы с левого и правого каналов с выводов 5 и 6 микросхемы DA1 через фильтр на конденсаторах С5…С8 поступают на соответствующие входы УЗЧ — выводы 1 и 4 микросхемы DA2. Громкость звучания регулируется резистором R7, в качестве которого используется переменный резистор “VOL” радиоприемника.

Усиленные сигналы левого и правого каналов с выводов 5 и 8 микросхемы DA2 через дроссели L1…L3 поступают на разъем наушников XS1 и динамическую головку ВА1 (в приемнике по схеме на рис. 2 ВА1 отсутствует). Выход антенны необходимо подключить к точке соединения конденсаторов С1, С2 приемника.

Подстроечный резистор R5 — СПЗ-19а; переключатель SA1 — ПДЭ-5; дроссели L1 …L3 — малогабаритные, индуктивностью 20…100 мкГн; остальные детали любых типов. как можно меньших размеров.

Для установки стереодекодера в приемнике, изображенном на рис. 1, необходимо выпаять микросхему 1С2, резисторы R1, R3…R5; конденсаторы С9, С15…С19. В приемнике, изображенном на рис. 2, необходимо выпаять транзисторы VТ6, VТ7; резисторы R2…R4; конденсаторы С12, С16, С17.

Стереодекодер размещается на печатной плате, размеры которой выбираются исходя из наличия свободного места внутри приемника. Микросхемы DA1, DA2 устанавливаются со стороны дорожек.

Плату стереодекодера в соответствии с принципиальной схемой соединяют в нужных точках с платой приемника, использовав отверстия от удаленных деталей.

Для переключателя SA1 “Моно-Стерео” необходимо на боковой стенке вырезать прямоугольное отверстие. В качестве индикатора “Стерео*’ в приемнике “РА-993″ используется индикатор включения питания “LED”, а в приемнике “РА-218” на передней панели сверлится отверстие, куда вставляется светодиод красного цвета диаметром 3 мм. Настройка схемы заключается в установке резистором R5 наилучшего разделения каналов при приеме радиостанции.

Режим “Стерео» будет обеспечиваться только для станций работающих в диапазоне 88…108 МГц. В заключение хотелось бы отметить очень низкое качество звучания комплексных наушников-вкладышей китайского производства, у которых нередко рвется тонкий соединительный провод, и они вообще перестают работать.

Единственный выход из этой ситуации состоит в приобретении хороших фирменных наушников, хотя их стоимость может в несколько раз превышать стоимость подобных приемников.

Д. Лаевский. РМ-07-17.

Литература:

  1. Микросхема TDA7088. — Радиохобби. 2000, №6.
  2. Поляков В. Однокристальные ЧМ приемники. — Радио, 1997, N2, стр. 20,
  3. Микросхемы для аудио и радиоаппаратуры. Справочник. — М. ДОДЭКА, 1997.
  4. Буевский А. Стерео FM-приемник «Стиль”. — Радиолюбитель, 2000, №5, стр, 9.
  5. Аленин С. Низковольтный УМЗЧ КР174УН23. — Радио, 1997.

↑ Управление TEA5767 по I2C шине. Описание регистров на русском

Исключён фрагмент. Полный вариант статьи доступен меценатам и полноправным членам сообщества. Читай условия доступа.

Новости

Добавление дисплея

Теперь, когда у нас есть устройство ввода, нам необходима возможность отображать настройки радиоприемника. Я не смог придумать ничего лучше, чем использовать дисплей от старых мобильных телефонов Nokia 5110/3310.

Дисплей Nokia 5110/3310

При работе с этим дисплеем необходимо учитывать два важных момента. Во-первых, существует несколько разновидностей этих дисплеев, и у них могут быть разные распиновки. Вы должны проверить распиновку на своем дисплее, убедиться, что он на самом деле работает от 3,3 В, и проверить правильность подключения к Arduino Pro Mini. Во-вторых, поскольку все входы/выходы Arduino используют напряжение 3,3 В, мне не пришлось использовать понижающие резисторы, которые вы обычно видите, когда эти дисплеи используются 5-вольтовыми платами Arduino, например, Uno.

Подключение дисплея Nokia 5110/3310 к Arduino
Вывод дисплея / НазначениеВывод Arduino или точка на схеме
1-RSTD3
2-CED4
3-DCD5
4-DIND6
5-CLKD7
6-VCCVcc (3.3v)
7-LIGHTGND
8-GNDGND

В программе я решил использовать библиотеку LCD5110_Basic, которая быстра и очень проста в использовании.

На рисунке ниже показан заполненный данными дисплей радиоприемника.

Дисплей Nokia 5110/3310 при использовании в радиоприемнике (на скриншоте некорректно показаны единицы измерения частоты mHz, в прошивке это исправлено MHz)

Начиная с левого верхнего угла, мы показываем:

  • строка 1 – режим (AM/FM/SW) и номер диапазона;
  • строка 2 – частотный диапазон;
  • строка 3 – уровни громкости и баса/тембра;
  • строка 4 – текущая частота (МГц или кГц);
  • строка 1 – индикаторы стерео (только для FM) и выключения звука (если активно).

Разумеется, эта информация постоянно обновляется, чтобы показывать изменения в настройках или вводе с клавиатуры.

Цели первого шага модели

Принцип работы микросхемы ШИМ контроллера КА3882

Принцип работы микросхемы ШИМ контроллера рассмотрим на примере схемы импульсного блока питания компьютерного монитора SyncMaster 500В.

На рис. 3 показана схема импульсного блока питания мониторов Samsung моделей SyncMaster 500В, Samtron 5В (шасси CGB5607) с размером экрана 15″. Параметры блока питания: напряжение питания 90…264 В, 50…60 Гц; мощность потребления 85 Вт.

В качестве ШИМ контроллера используется микросхема IC601 типа КА3882. Ее выход управляет мощным полевым транзистором Q601 (SSH6N80), сток которого соединен с обмоткой 5-2 импульсного трансформатора Т601. На выходах выпрямителей во вторичной цепи формируется ряд напряжения 75, 53, 14,5,12, -12, 7 В для питания схемы видеоусилителей, строчной развертки, кадровой развертки, накала кинескопа. Схема имеет защиту от превышения напряжения питания, перегрузки по току и короткого замыкания. Схема поддерживает режим сохранения энергии согласно стандарту VESA: потребление в режиме Stand-by составляет 55 Вт, в режиме Suspend 15 Вт, в режиме Off 5 Вт.

Микросхема КА3882 состоит из генератора, усилителя ошибки, компаратора напряжения, использующего сигнал с резистора ограничения тока, пороговой схемы с гистерезисом, которая гарантирует стабильную работу в диапазоне напряжения питания 10…16 В, и выходного каскада для подключения мощного полевого транзистора. Работа микросхемы КА3882 довольно проста. При появлении на входе блока питания выпрямленного сетевого напряжения 300 В на выв. 7 IC601 через элементы R608, R609 протекает стартовый ток и включаются узлы микросхемы. Внутренний генератор начинает вырабатывать импульсы с частотой, определяемой цепочкой R607, С605, подключенной к выв. 4 IC601. С выв. 6 IC601 импульсы через резистор R610 и BD601 поступают на затвор ключевого транзистора Q601, обеспечивая импульсный ток в первичной обмотке 5-2 силового трансформатора Т601. Это приводит к появлению напряжения в обмотке 7-8 трансформатора, которое после выпрямления диодом D610 и сглаживания на емкости С613 поступает на выв. 7 IC601, обеспечивая ее питание в рабочем режиме

Важное свойство микросхемы КА3882: она не включается, если на выв. 7 напряжение меньше 10 В, и выключается, когда напряжение выше 16В (аварийный режим)

Дополнительную защиту обеспечивает цепочка элементов D611, С614, R622, R620, ZD602 и триггерная схема Q602, Q603, которая останавливает работу микросхемы в случае перенапряжений. В случае коротких замыканий во вторичных цепях источника питания, например при выходе из строя одного из выпрямительных диодов, пробоя электролитических конденсаторов или при неисправности в одном из блоков монитора, напряжения обмотки 7-8 не хватает для работы микросхемы ШИМ контроллера, и она выключается до момента, пока конденсатор С613 не зарядится до напряжения ее включения (более 10 В). Далее микросхема ШИМ контроллер снова включается и немедленно выключается. Интервал между включениями составляет примерно 1…2 с, при этом слышны слабые щелчки из импульсного трансформатора блока питания. Такой режим импульсного блока питания обеспечивает надежную защиту ключевого транзистора от перегрузки по току напряжением, снимаемым с резистора R614. Выходные напряжения блока питания стабилизируются через оптопару IC602 (CQY80NG). Эта часть схемы включает в себя также прецизионный источник опорного напряжения IC603 (TL431) и переменный резистор VR601 для установки номинальных напряжений. Изменение нагрузки во вторичной цепи управляет засветкой фототранзистора оптопары IC603, в результате происходит управление длительностью открытого состояния ключа.

Схемки на AN6884

Рейтинг:  5 / 5

Подробности
Категория: Схемы начинающим
Опубликовано: 28.06.2018 11:18
Просмотров: 2628

простые схемы Микросхема AN6884 предназначена для работы в светодиодных индикаторах уровня сигнала, в аудиоаппаратуре. Внутри её (рисунок 1) есть четыре компаратора К1-К4, на выходах которые ключи, один усилитель А1, детектор на диоде VD2, стабилизатор на стабилитроне VD1 и набор резисторов. К выходам ключей компараторов подключаются светодиоды. Питание (плюс) подается на девятый вывод, а минус — на пятый. Посмотрим, что получается.

Резистор R1 вместе со стабилитроном VD1 образует стабилизатор некоторого образцового напряжения. Это напряжение поступает на один из входов компаратора К5 напрямую, а на входы других компараторов — через делитель напряжения из резисторов R2-R6. Если теперь постепенно, начав с нуля, увеличивать напряжение, которое поступает на соединенные вместе вторые входы компараторов, то ключи на выходах компараторов будут открываться в момент превышения этого напряжения, над напряжением, поступающим на их первые входы (от делителя на R2-R6). Таким образом, число открытых ключей будет зависеть от напряжения, поступающего на соединенные вместе входы компараторов. А к выходам этих ключей подключены светодиоды. Поэтому, чем больше напряжение, тем большее число светодиодов будет гореть, и наоборот. Для усиления входного напряжения служит усилитель А1. А детектор VD2 позволяет измерять еще и переменные напряжения, и устанавливать быстроту реакции индикатора. Микросхема выполнена в корпусе, у которого выводы только с одной стороны. На краю корпуса возле первого вывода сделан скос, который означает, что отсчитывать выводы надо именно с этого края. Чувствительность микросхемы около 0,15V, это значит, что при таком напряжении на входе (на выводе 8), будут гореть светодиоды, подключенные к выводам 1, 2 и 3. При напряжении около 0,25V горят все светодиоды, а при напряжении 0,07V горит только один, подключенный к первому выводу. На рисунке 2 показана схема индикатора уровня 3Ч сигнала на этой микросхеме. Его вход можно, например, подключить к выходу УНЧ магнитофона (параллельно динамику), чтобы по числу горящих светодиодов можно было оценить уровень сигнала. Если светодиоды расположить последовательно и в линейку, то получится такой светящийся столбик по высоте которого можно судить о громкости или уровне сигнала. Подстройкой сопротивления R2 нужно установить чувствительность индикатора так, чтобы при средней громкости горели светодиоды HL1, HL2, HL3, при большой — HL1, HL2, HL3, HL4. А при такой громкости, когда начинаются искажения горели все светодиоды. Последний из них, — HL5 может быть красным, предпоследний — HL4 — желтым, а все остальные зелеными. Теперь установив громкость магнитофона или усилителя так, чтобы горели только зеленые светодиоды и изредка желтый, мы получим оптимальное качество звука. А если аппарат стереофонический, можно сделать два таких индикатора, подключить каждый к своему усилителю. Расположить их рядом и глядя на них оценивать баланс стереоканалов. Деталей в схеме индикатора мало. Все они смонтированы на печатной плате, показанной на рисунке 3. При монтаже нужно помнить, что первый вывод микросхемы AN6884 отмечен скосом на корпусе. Вместо микросхемы AN6884 можно использовать аналогичные LB1403, LB1413, LB1423. Они точно такие же, но скос возле первого вывода сделан не по ребру корпуса, а по его уголку. Впрочем, какая разница, — скос возле первого вывода, и ладно. Светодиоды подойдут любые обычные, например, АЛ307, АЛ102 или какие-то импортные, но только не инфракрасные. Полярность светодиодов можно определить при помощи мультиметра (проверить как диоды) или батарейкой с резистором (рис. 4). При проверке батарейкой резистор обязателен, иначе может сгореть светодиод. Источник питания схемы может быть напряжением от 4,5 до 16V, например, источник питания магнитофона, батарейка, или лабораторный источник. Используя микросхему AN6884 (или аналогичную) можно сделать индикатор акустического шума или громкости звука, который будет оценивать уровень звука в помещении или возле какого-то объекта Схема такого индикатора показана на рисунке 5.

Оставлять комментарии могут только зарегистрированные пользователи

Навигация по записям

§ 22. Монтажник радиоэлектронной аппаратуры и приборов 5-го разряда

LM358 DataSheet на русском, описание и схема включения

Микросхема LM358 как написано в его DataSheet является универсальным решением, так как схема включения большинства популярных устройств весьма проста, в случаях отсутствия жестких требований к высокому быстродействию, рассеиваемой мощности и нестандартному питающему напряжению. Небольшая стоимость, отсутствие необходимости подключения дополнительных элементов частотной коррекции, возможность использования во всем диапазоне стандартных питающих напряжений (до +32В) и низкий потребляемый ток, делают его кандидатом номер один для электронных проектов с ОУ.

LM358 цоколевка

LM358 состоит из двух ОУ, каждый имеет по 4 вывода, имеющих свое назначение. Всего получается 8 контактов. Производятся в нескольких видах корпусного исполнения, для объемного DIP и поверхностного монтажа на плату SO. Так же могут встречается в усовершенствованных корпусах SOIC, VSSOP, TSSOP.

 

Назначение контактов для всех видов корпусов совпадает: 2,3, 5,6, — входы, 1,7 – выходы, 4 – минус источника питания, 8 – плюс источника питания.

Технические характеристики

Ниже указаны предельные допустимые значения условий эксплуатации для диапазона рабочих температур окружающей среды Tот 0 до +70 °C, если не указано иное.

Основные электрические характеристики, при температуре окружающей среды TA = 25 °C.

Рекомендуемые условия эксплуатации в диапазоне рабочих температур окружающей среды, если не указано иное:

Подверженность устройства повреждению от электростатического разряда (ESD):

Также у данного устройства есть тепловые характеристики:

Схемы подключения

Ниже приведем несколько простых схем включения lm358 которые могут вам пригодится. Все они являются ознакомительными, так что обязательно проверяйте все перед внедрением в производственной сфере.

Схема в мощном неинвертирующим усилителе.

Преобразователь напряжения — ток.

Схема с дифференциальным усилителем.

Неинвертирующий усилитель средней мощности.

Аналоги

Аналогами LM358 можно считать микросхемы в которых  указываются идентичные характеристики. К таким относятся: LM158, LM258, LM2904, LM2409. Эти микросхемы незначительно отличаются от описываемой своими тепловыми параметрами и подойдут в качестве замены для большинства проектов.

Для ее замены можно использовать: GL 358, NE 532, OP 04, OP 221, OP 290, OP 295, OPA 2237, TA7 5358-P, UPC 358C, AN 6561, CA 358E, HA 17904. Отечественные аналоги lm358: КР 1401УД5, КР 1053УД2, КР 1040УД1.

Для замены также может подойти аналог по электрическим параметрам, но уже c четырьмя ОУ в одной микросхеме — LM324.

Маркировка

Префикс LM сначала использовался при маркировке общего назначения компанией National Semiconductor. Цифры “358” это ее серийный номер. В 2011 году эта компания  была приобретена другим производителем электроники Texas Instruments. С этого года префикс “LM” является кодом производителя Texas Instruments, но несмотря на это, этот код используют и другие производители при маркировке своей продукции.Микросхемы LM358, LM358-N и LM358-P имеют одинаковые технические параметры. У большинства компаний-производителей символами “-N” , “-P” обозначаются пластиковые корпуса PDIP.

В технических описания встречается такие виды: LM358A, LM358B, LM358BA. Так указывается версии следующего поколения промышленного стандарта LM358. Устройства «B» могут быть доступны в более современных микрокорпусах TSOT и WSON.

Применение

Lm358 широко используется в:

  • устройствах типа «мигающий маяк»;
  • блоках питания и зарядных устройствах;
  • схемах управления двигателем;
  • материнских платах;
  • сплит системах внутреннего и наружного применения;
  • бытовой технике: посудомоечные, стиральные машины, холодильные установки;
  • различных видах инверторов;
  • источниках бесперебойного питания;
  • контроллерах и др.

Возможности применения микросхемы производители обычно указывают в технических описаниях на свои устройства.

↑ Функции датагорской библиотеки для TEA5767

1) tea5767_write ();2) tea5767_read ();3) tea5767_calc_write_PLL (uint16_t Value);4) tea5767_init ();

5) (uint16_t)tea5767_calc_read_PLL ();TEA5767WriteRegisterИсключён фрагмент. Полный вариант статьи доступен меценатам и полноправным членам сообщества. Читай условия доступа.

TEA5767ReadRegisterTEA5767WriteRegister.MUTE = 1tea5767_write ()tea5767_read ()SignalLevel = TEA5767ReadRegister.LEV32768Гц

Онлайн-курсы

Причины выхода из строя светодиодной лампы

При перепаде напряжения чаще всего сгорает микросхема – драйвер питания. Выход из строя диодного моста либо сглаживающего конденсатора скорее казуистика.

В промышленных лампах чаще всего в качестве высоковольтного драйвера питания используют микросхему bp2831. Её задача – обеспечить стабильное напряжение, подаваемое на светодиоды.

Вот классическая схема питания для таких ламп. Понятно, что номинал радиодеталей может незначительно различаться, но общий принцип схемы будет одинаковым.

Назначение управляющих выводов:

VCC – положительный полюс питания;GND – земля;ROVP – ограничение напряжение;CS – ограничение тока;DRAIN – выход диммированного сигнала.

Эта микросхема представляет собой ШИМ-контроллер, управляющий сигнал, которого коммутируется через мощный мосфетовский полевой транзистор.

Вот так она выглядит на плате

Размещение bp2831 на плате

Мир

АзияАмерикаАфрикаЕвропаПрибалтикаЕвропейская политикаОкеанияГорода мираРоссияМоскваКавказРегионы РоссииПрограммы регионовЭкономика

Кто ходит по сайту

uc3846 — описание, принцип работы, схема включения

ШИМ контроллер uc3846 имеет 16 выводов. Основные принципы работы можно обозначить тезисами:

  • если на 16 выводе напряжение ниже 0,35В, выходные импульсы на выводах 11 и 14 будут заблокированы полностью;
  • если на выводе 1 напряжение низкое (ниже 0,35В), результат будет таким же;
  • на 2 выводе напряжение должно составлять 5,1В;
  • 13 и 15 выводам соответствует напряжение питания 8-40В;
  • вывод 10 построен для внешней синхронизации в схеме;
  • 9 и 6 выводы нужны для подключения резистора и конденсатора, которые будут задавать частоту работу ШИМ;
  • выводы 3,4, а также 5,6 служат для сигналов ошибок общей схемы источника питания или преобразователя;
  • вывод 12 — общий провод;
  • вывод 7 — выход усилителя ошибки;
  • вывод 1 — ограничение предельного тока.

Основная схема включения микрочипа uc3846 представлена на рисунке 7.

Рисунок 7. Схема включения микрочипа uc3846

Добавление клавиатуры

Для управления радиоприемником нам необходимо устройство ввода. Для наших целей достаточно простой мембранной клавиатуры. Их легко подключить к Arduino. Ниже приведена иллюстрация назначения выводов клавиатуры (где строки, а где столбцы), которую использовал я, вы должны убедиться, что ваша клавиатура аналогична.

Простая мембранная клавиатура

Подключение клавиатуры к Arduino
КлавиатураArduino
Строка 1D8
Строка 2D9
Строка 3D10
Строка 4D11
Столбец 1D13
Столбец 2D14
Столбец 3D15

В программном обеспечении я использовал библиотеку от Марка Стэнли и Александра Бревига, которая выпущена под лицензией GNU General Public License. Для проекта мы сопоставим функции с кнопками, как показано ниже.

Назначение кнопок для управления радиоприемником

Назначение кнопок клавиатуры:

  • AM: переключить в режим AM (средние волны), диапазон 22;
  • FM: переключить в режим FM (ультракороткие волны), диапазон 8;
  • SW: переключить в режим SW (короткие волны), диапазон 31.

Обратите внимание, что стандартные диапазоны для изменения режима настраиваются в программе и легко могут быть изменены. Кроме того, текущие значения громкости и тона будут перенесены в новый режим

Vol+ / Vol- : Увеличить или уменьшить громкость на один шаг. Есть 64 уровня громкости. Поскольку в проекте используются колонки со встроенным усилителем, эти кнопки не сильно важны, но их наличие всё равно радует;

Band+/Band- : Изменение диапазона на один шаг, но из числа доступных в текущем режиме;

B/T+ / B/T- : Увеличить или уменьшить тон на один шаг. Я признаю, что несколько вольно использую термин «тон». Для режима FM это увеличит или уменьшит уровень низких частот от 0 (макс. бас) до 8 (макс. высокий). Для режимов AM/SW это установит канальный фильтр от 1 до 7. Фильтры составляют 1.0 кГц, 1.8 кГц, 2.0 кГц, 2.5 кГц, 2.83 кГц, 4.0 кГц и 6.0 кГц соответственно

Также обратите внимание, что для простоты и удобства программирования (т.е. лени) в режимы AM/SW могут быть добавлены уровни 0 и 8, но они не будут отличаться от уровней 1 и 7 соответственно;

Mute: Включить или выключить звук на выходе.

Основная схема

Схема радиоприемника

На рисунке 1 представлена основная схема радиоприемника, взятая и адаптированная из технического описания Silicon Labs Si4844 и рекомендаций по применению. Для приема в диапазоне КВ я использовал ферритовую антенну от старого портативного приемника. Q1 – усилитель для СВ/УКВ, здесь я так же использовал телескопическую антенну от старого приемника. Стоит заметить, что руководство по проектированию, приведенное выше, дает несколько альтернатив и различные подходы к антеннам.

Переменный резистор (VR1) является критичным элементом схемы, поскольку он будет использоваться для настройки частоты приемника (ручка настройки). Рекомендуется использовать линейный потенциометр. Для аудиовыхода я решил использовать пару «экономичных» аудиоколонок со встроенным усилителем, которые у меня остались от старого компьютера. Разумеется, можно использовать простой стереоусилитель.

Возможно, наиболее сложная часть сборки – это работа с микросхемой в корпусе SSOP-24. Если у вас нет опыта работы с SMD микросхемами, возможно, самым простым способом будет использование переходной платы. У меня была переходная плата SSOP-28; немного пайки, и с микросхемой стало можно работать, как с микросхемой в DIP корпусе. Другими потенциально трудными компонентами для работы является пара из ферритового фильтра (бусинки) и конденсатора. Эти компоненты также можно припаять на переходную плату, чтобы работать с ними как с DIL элементом.

SMD компоненты, припаянные на переходные платы

Список компонентов основной схемы
КомпонентОписание
B1Ферритовый фильтр (бусинка) 2,5 кОм (100 МГц)
C1,C2,C5Неполярный конденсатор 4,7 мкФ
C3,C4Конденсатор 22 пФ
C6,C7,C9Конденсатор 0,1 мкФ
C8Неполярный конденсатор 47 мкФ
C10,C11Конденсатор 0,47 мкФ
C12,C14Конденсатор 33 нФ
C13Конденсатор 33 пФ
C15Конденсатор 10 пФ
IC1Радиоприемник Si4844-A10
Q1NPN транзистор SS9018
R1, R2Резистор 2,2 кОм
R3Резистор 1 кОм
R4,R7Резистор 100 кОм
R5Резистор 10 Ом
R6Резистор 120 кОм
R8Резистор 100 Ом
L1Индуктивность 270 нГн
VR1Линейный потенциометр 100кОм
Y1Кварцевый резонатор 32,768 кГц
ANT1Ферритовая антенна
ANT2Телескопическая/штыревая антенна
Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации