Андрей Смирнов
Время чтения: ~19 мин.
Просмотров: 0

Стабилитрон — это что такое и для чего он нужен?

Схема простейшего метода проверки напряжения стабилитрона

Радиолюбители и все те, кто хорошо дружит с электроникой знают, что задача нахождения стабилитрона с нужными характеристиками (рабочим напряжением) скучная и кропотливая. Случается, что нужно перебрать очень много разных экземпляров, пока не найдётся нужное значение Vz. Проверка состояния стабилитрона обычно делается с помощью обычной шкалы мультиметра для измерения диодов, этот тест дает нам точное представление о состоянии компонента, но не дает нам определить значение Vz. В общем тестер стабилитронов это действительно удобный прибор, когда мы хотим быстро выяснить значение напряжения Vz.

Расскажите друзьям!

Виды полупроводниковых диодов

Свойство диода пропускать ток в прямом направлении и не пропускать его в обратном нашло применение в электротехнике и радиотехнике. Разработаны и специальные виды диодов для выполнения узкого круга задач.

Выпрямители и их свойства

Их применение основано на выпрямительных свойствах этих приборов. Их используют для получения постоянного напряжения путём выпрямления входного переменного сигнала.

Одиночный выпрямительный диод позволяет получить на его выходе пульсирующее напряжение положительной полярности. Используя их комбинацию, можно получить форму выходного напряжения, напоминающую волну. При использовании в схемах выпрямителей дополнительных элементов, таких как электролитические конденсаторы большой емкости и катушки индуктивности с электромагнитными сердечниками (дроссели), на выходе устройства можно получить постоянное напряжение, напоминающее напряжение гальванической батареи, столь необходимое для работы большинства аппаратуры потребителя.

Полупроводниковые стабилитроны

Эти диоды имеют ВАХ с обратной ветвью большой крутизны. То есть, приложив к выводам стабилитрона напряжение, полярность которого обратная, можно с помощью ограничительных резисторов ввести его в режим управляемого лавин пробоя. Напряжение в точке лавинного пробоя имеет постоянное значение при значительном изменении тока через стабилитрон, величину которого ограничивают в зависимости от применённого в схеме прибора. Так получают эффект стабилизации выходного напряжения на нужном уровне.

Технологическими операциями при изготовлении стабилитронов добиваются различных величин напряжения пробоя (напряжения стабилизации). Диапазон этих напряжений (3−15) вольт. Конкретное значение зависит от выбранного прибора из большого семейства стабилитронов.

Принцип работы детекторов

Для детектирования высокочастотных сигналов применяют диоды, изготовленные по точечной технологии. Задача детектора состоит в том, чтобы ограничить одну половину модулированного сигнала. Это позволяет в последующем с помощью высокочастотного фильтра оставить на выходе устройства только модулирующий сигнал. Он содержит звуковую информацию низкой частоты. Этот метод используется в радиоприёмных устройствах, принимающих сигнал, модулированный по амплитуде.

Особенности светодиодов

Эти диоды характеризуются тем, что при протекании через них тока прямого направления кристалл испускает поток фотонов, которые являются источником света. В зависимости от типа кристалла, применённого в светодиоде, спектр света может находиться как в видимом человеческим глазом диапазоне, так и в невидимом. Невидимый свет — это инфракрасное или ультрафиолетовое излучение.

При выборе этих элементов необходимо представлять цель, которую необходимо достигнуть. К основным характеристикам светодиодов относятся:

  • Потребляемая мощность;
  • Номинальное напряжение;
  • Ток потребления.

Ток потребления светодиода, применяемого для индикации в устройствах широкого применения, не более 20 мА. При таком токе свечение светодиода является оптимальным. Начало свечения начинается при токе, превышающем 3 мА.

Номинальное напряжение определяется внутренним сопротивлением перехода, которое является величиной непостоянной. При увеличении тока через светодиод сопротивление постепенно уменьшается. Напряжение источника питания, используемое для питания светодиода, необходимо применять не меньше напряжения, указанного в паспорте на него.

Перед другими осветительными приборами светодиоды имеют неоспоримые преимущества. Их можно перечислять долго. Основными из них являются:

  • Высокая экономичность;
  • Большая долговечность;
  • Высокий уровень безопасности из-за низких питающих напряжений.

К недостатку их эксплуатации относится необходимость наличия дополнительного стабилизированного источника питания постоянного тока, а это увеличивает стоимость.

Можно ли проверить деталь, не выпаивая

Выпаивать полупроводниковую деталь не всегда удобно, особенно, если платы имеют двухсторонний монтаж схемы. Проверка стабилитронов мультиметром без демонтажа вполне возможна. Если показания измерительного прибора не определяют повреждения, то их можно считать реальными. При результатах, показывающих обрыв, можно быть уверенными, что это тоже факт. Но, когда измерения регистрируют пробой – низкое сопротивление при любой полярности подключения щупов, то это не всегда так. В этом случае деталь нужно выпаивать.

Осторожно. Измерения тестером с внутренним напряжением, большим напряжения пробоя стабилитрона, может привести к реальному пробою

Для проверки таких элементов удобно пользоваться стрелочными аналоговыми приборами. Напряжение питания у них – не более 3 В

Измерения тестером с внутренним напряжением, большим напряжения пробоя стабилитрона, может привести к реальному пробою. Для проверки таких элементов удобно пользоваться стрелочными аналоговыми приборами. Напряжение питания у них – не более 3 В.

Полупроводниковые диоды

Свойство p — n перехода пропускать электрический ток одного направления нашло применение при создании приборов этого типа. Прямое включение — это подача на n -область перехода отрицательного потенциала, по отношению к p -области, потенциал которой положительный. При таком включении прибор находится в открытом состоянии. При изменении полярности приложенного напряжения он окажется в запертом состоянии, и ток сквозь него не проходит.

Классификацию диодов можно вести по их назначению, по особенностям изготовления, по типу материала, используемого при его изготовлении.

В основном для изготовления полупроводниковых приборов используются пластины кремния или германия, которые имеют электропроводность n -типа. В них присутствует избыток отрицательно заряженных электронов.

Применяя разные технологии изготовления, можно на выходе получить точечные или пластинчатые диоды.

При изготовлении точечных приборов к пластинке n -типа приваривают заострённый проводник (иглу). На его поверхность нанесена определённая примесь. Для германиевых пластин игла содержит индий, для кремниевых пластин игла покрыта алюминием. В обоих случаях создаётся область p — n перехода. Её форма напоминает полусферу (точку).

На схемах полупроводниковые диоды обозначаются в виде равностороннего треугольника, к верхнему углу которого присоединена вертикальная черта, параллельная его основанию. Вывод черты называется катодом, а вывод основания треугольника анодом.

Прямым называется такое включение, при котором положительный полюс источника питания соединён с анодом. При обратном включении «плюс» источника подключается к катоду.

Вольт- амперная характеристика

ВАХ определяет зависимость тока, протекающего через полупроводниковый элемент, от величины и полярности напряжения, которое приложено к его выводам.

В области прямых напряжений выделяют три области: небольшого прямого тока и прямого рабочего тока через диод. Переход из одной области в другую происходит при достижении прямым напряжением порога проводимости. Эта величина составляет порядка 0,3 вольт для германиевых диодов и 0,7 вольт для диодов на основе кремния.

При приложении к выводам диода обратного напряжения ток через него имеет очень незначительную величину и называется обратным током или током утечки. Такая зависимость наблюдается до определённого значения величины обратного напряжения. Оно называется напряжением пробоя. При его превышении обратный ток нарастает лавинообразно.

Предельные значения параметров

Для полупроводниковых диодов существуют величины их параметров, которые нельзя превышать. К ним относятся:

  • Максимальный прямой ток;
  • Максимальное обратное напряжение пробоя;
  • Максимальная мощность рассеивания.

Полупроводниковый элемент может выдержать прямой ток через него ограниченной величины. При его превышении происходит перегревание p-n перехода и выход его из строя. Наибольший запас по этому параметру имеют плоскостные силовые приборы. Величина прямого тока через них может достигать десятков ампер.

Превышение максимального значения напряжения пробоя может превратить диод, имеющий однонаправленные свойства, в обычный проводник электрического тока. Пробой может иметь необратимый характер и варьируется в широких пределах, в зависимости от конкретного используемого прибора.

Мощность — это величина, напрямую зависящая от тока и напряжения, которое приложено при этом к выводам диода. Как и превышение максимального прямого тока, превышение предельной мощности рассеивания приводит к необратимым последствиям. Диод просто выгорает и перестаёт выполнять своё предназначение. Для предотвращения такой ситуации силовые приборы устанавливают приборы на радиаторы, которые отводят (рассеивают) избыток тепла в окружающую среду.

Выбираем стартер

Особенности и принцип работы диода Шоттки

Если есть, то нужно их достать и заменить новым полупроводником, устранив неполадки самостоятельно, но лучше обратиться за помощью к профессионалам. Для всех приборов, имеющих барьерную структуру, свойственна несимметричность ВАХ, ведь именно количеством носителей электрического заряда обусловлена зависимость тока от напряжения.

Рассмотрим их: Если в полупроводниковом элементе возникнет пробоина, то он просто перестает держать ток и становится проводником.

Как видим, электроника не стоит на месте, и дальнейшие варианты применения быстродействующих приборов будет только увеличиваться, давая возможность разрабатывать новые, более сложные системы.

При дальнейшем его повышении диод Шоттки ведёт себя как обычный кремниевый выпрямительный диод. Однако большой процент обратного тока является очевидным недостатком. Как правило, они либо полностью пробиваются, либо дают утечку.

Отличие от других полупроводников

Сдвоенный диод — это два диода смонтированных в одном общем корпусе. Очень часто в принципиальных схемах сложное графическое изображение катода попросту опускают и изображают диод Шоттки как обычный диод.

Разновидности диодов Шоттки

Главное, за что радиолюбители их так ценят — высокое быстродействие и малое падение напряжения на переходе — максимум 0,55 вольт — при невысокой цене данных компонентов. В металле отсутствуют неосновные носители заряда, и инжекция не- 35 Москатов Е.

Есть и более простые схемы, где диоды Шоттки очень малы. Подобные элементы используются в современных батареях и транзисторах, работа которых обеспечивается сенечной энергией. Нерабочее состояние возникает при: утечке на корпус; электроприборе.
Диоды в солнечной энергетике. Надо ли их ставить?

Это видео недоступно.

Проверка выпрямительного диода и стабилитрона

В плане самостоятельного диодного тестирования мультиметром, особый интерес представляет проверка:

  • обычных диодов на основе p-n-перехода;
  • диодных элементов Шоттки;
  • стабилитронов, стабилизирующих потенциал.

Обычное тестирование, в этом случае, позволяет определить только целостность p-n-перехода, и именно по этой причине в таких устройствах рабочая точка должна быть смещена.

Схема простейшего метода проверки напряжения стабилитрона

Достаточно использовать простенькую схему, включающую в себя обычный источник питания и резистор для ограничения тока. Мультиметр при нестандартной проверке применяется для замера напряжения, в условиях плавного повышения питающего потенциала.

Основные неисправности стабилитрона

Работоспособность детали, расположенной в блоках аппаратуры, можно выявить, зная основные неисправности. К ним можно отнести следующие повреждения или отклонения от нормы:

  • пробой перехода;
  • обрыв;
  • неправильное напряжение;
  • неточный ток.

Если первые два пункта вопросов не вызывают, то вторые две позиции относятся к неявным повреждениям.

Внимание! Когда измеренное мультиметром на диоде зенера падение напряжения в прямом направлении совпадает с заявленным значением, это означает, что элемент исправен. При проверке стабилитрона подключают плюсовой щуп к аноду, а отрицательный – к катоду

В режиме проверки диодов на экране отобразится величина падения напряжения на тестируемом элементе. При переполюсовке щупов на дисплее не будет значений, высветится «1»

При проверке стабилитрона подключают плюсовой щуп к аноду, а отрицательный – к катоду. В режиме проверки диодов на экране отобразится величина падения напряжения на тестируемом элементе. При переполюсовке щупов на дисплее не будет значений, высветится «1».

При пробое перехода при прямом и обратном прикасании измерительных щупов на дисплее тестера будут высвечиваться цифры. Когда в режиме проверки диода на тестере присутствует звуковое оповещение (пищалка), то оно сработает.

При обрыве перехода измерения ничего не покажут при любом прикладывании щупов тестера. В этом случае даже без выпаивания стабилитрона из платы можно определить его неисправность.

Неправильное напряжение стабилизации определяется только при включении питания схемы. В режиме вольтметра щупами касаются выводов детали и измеряют параметр. В случае отклонения от необходимой величины стабилитрон заменяется.

При определении исправности элемента с напряжением стабилизации до 20-30 В пользуются простым методом. Для этого нужно собрать небольшую макетную модель для испытаний, в неё входят:

  • панель для закрепления микросхем (любая);
  • ограничивающий резистор сопротивлением 4,7 кОм, мощностью до 0,25 Вт;
  • источник питания: подойдёт блок питания от ноутбука, в идеале – источник с регулировкой выходного напряжения.

Панель от микросхемы поможет закреплять в её пазах любой проверяемый элемент.

Осторожно. При подключении в схему проверяемого полупроводника подключают «плюс» к катоду, «минус» – к аноду

Неправильное включение выведет испытуемую деталь из строя.

Стабилизация напряжения с использованием стабилитронов – успешное решение в электронных схемах. Правильное тестирование стабилитрона с помощью мультиметра поможет определить неисправную деталь и сберечь схему от повреждения.

Установка стартера на мотоцикл Урал своими руками

constant current 1300ma external led driver 48W 50W 60W 18-24VDC 1500ma LED power supply for led panel/ceiling/flood light


US $6.55-$11.08

/ Piece

500 Pieces (Min. Order)

9YRS

Huizhou Hi-Zealed Electronic Co., Ltd.

(1)

60.0%

Contact Supplier

Что вам понадобится

Установка стартера на мотоцикл Урал своими руками

Как проверить светодиод мультиметром?

Тестирование светодиодных устройств ламп или просто светодиодов гораздо проще с цифровым мультиметром, который даст вам четкое представление о том, насколько сильны каждый из светодиодов. Яркость светодиода при его тестировании также укажет на его качество. Если у вас нет мультиметра для использования, простой держатель батареи для круглых батарей с выводами даст вам знать, работают ли ваши светодиоды.

Как проверить светодиод мультиметром?

Приобретите цифровой мультиметр, который может проверять диоды.  Мультиметры измеряют только показатели, вольт и омы. Для тестирования светодиодных индикаторов вам понадобится мультиметр с настройкой диода. Проверьте онлайн или в местном магазине аппаратных средств для мультиметров среднеценового и высокоценового диапазона, которые, скорее всего, будут иметь эту функцию, в сравнении с  недорогими моделями.

Подключите красный и черный измерительные провода. Красный и черный измерительные провода должны быть подключены к выходам на передней панели мультиметра. Красный провод – положительный заряд. Черный провод является отрицательным и должен быть подключен к входу с надписью «COM».
Поверните колесико мультиметра в положение диода. Поверните циферблат на передней панели мультиметра по часовой стрелке, чтобы отодвинуть его от положения «выключено». Продолжайте поворачивать его, пока не приземлитесь на настройку диода. Если он не помечен явно, настройка диода может быть представлена ​​символом схемы диода.

Символ диода визуально представляет собой как его клеммы, так и катод и анод

Подключите черный зонд к катоду и красный зонд к аноду. Прикоснитесь к черному зонду к катодному концу светодиода, который обычно является более коротким. Затем нажмите красный зонд на анод, который должен быть длинным. Обязательно подключите черный зонд перед красным зондом, так как обратное может не дать вам точного показания.

  • Убедитесь, что катод и анод не касаются друг друга во время этого теста, что может препятствовать прохождению тока через светодиодный индикатор и затруднять результаты.
  • Черные и красные контакты также не должны касаться друг друга во время теста.
  • Выполнение соединений должно привести к тому, что светодиод засветится.

Проверьте значение на цифровом дисплее мультиметра. Когда контакты мультиметра касаются катода и анода, неповрежденный светодиод должен отображать напряжение приблизительно 1600 мВ. Если во время теста на экране не появляется показаний, повторите попытку, чтобы убедиться, что соединения выполнены правильно. Если вы правильно выполнили тест, это может быть признаком того, что светодиодный индикатор не работает.

Метод комфортен для всех типов светоизлучающих диодов, независимо от их выполнения и количества выводов. Замыкая красноватый щуп на анод, а темный на катод исправный светодиод должен засветиться. При смене полярности щупов на дисплее тестера должна оставаться цифра 1. Свечение излучающего диодика во время проверки будет маленький и на неких светодиодах при ярчайшем освещении может быть неприметно. Для четкой проверки разноцветных LED с несколькими выводами следует знать их распиновку. В неприятном случае придется наобум перебирать выводы в поисках общего анода либо катода. Не стоит страшиться тестировать массивные светодиоды с железной подложкой. Мультиметр не способен вывести их из строя, методом замера в режиме прозвонки. Проверку светодиода мультиметром можно выполнить без щупов, используя гнезда для тестирования транзисторов.

Оцените яркость светодиода. Когда вы делаете правильные подключения для проверки своего светодиода, он должен засветится. Отметив показания на цифровом экране, посмотрите на сам светодиод. Если он не нормально светится, выглядит тусклым, это, скорее всего, некачественный светодиод. Если он сияет ярко, это,скорее всего качественный рабочий светодиод.

Мы надеемся, что в данной статье вы нашли все ответы на вопросы

Диодный мост.

Диодный мост – это небольшая схема, составленная из 4-х диодов и предназначенная для преобразования переменного тока в постоянный. В отличие от однополупериодного выпрямителя, состоящего из одного диода и пропускающего ток только во время положительного полупериода, мостовая схема позволяет пропускать ток в течение каждого полупериода. Диодные мосты изготавливают в виде небольших сборок заключенных в пластмассовый корпус.

Из корпуса сборки выходят четыре вывода напротив которых расположены знаки «+», «» или «~», указывающие, где у моста вход, а где выход. Но не обязательно диодные мосты можно встретить в виде такой сборки, их также собирают включением четырех диодов прямо на печатной плате, что очень удобно.

Например. Вышел из строя один из диодов моста, если будет стоять сборка, то ее смело выкидываем, а если мост будет собран из четырех диодов прямо на плате — меняем неисправный диод и все готово.

На принципиальных схемах диодный мост обозначают включением четырех диодов в мостовую схему, как показано в левой части нижнего рисунка: здесь, диоды являются как бы плечами выпрямительного моста.
Такое графическое обозначение моста можно встретить еще в старых журналах по радиотехнике. Однако, на сегодняшний день, в основном, диодный мост обозначают в виде ромба, внутри которого расположен значок диода, указывающий только на полярность выходного напряжения.

Теперь рассмотрим работу диодного моста на примере низковольтного выпрямителя. В таком выпрямителе, с использованием четырех диодов, во время каждой полуволны работают поочередно два диода противоположных плеч моста, включенных между собой последовательно, но встречно по отношению ко второй паре диодов.

Со вторичной обмотки трансформатора переменное напряжение поступает на вход диодного моста. Когда на верхнем (по схеме) выводе вторичной обмотки возникает положительный полупериод напряжения, ток идет через диод VD3, нагрузку , диод VD2 и к нижнему выводу вторичной обмотки (см. график а). Диоды VD1 и VD4 в этот момент закрыты и через них ток не идет.

В течение другого полупериода переменного напряжения, когда плюс на нижнем (по схеме) выводе вторичной обмотки, ток идет через диод VD4, нагрузку , диод VD1 и к верхнему выводу вторичной обмотки (см. график б). В этот момент диоды VD2 и VD3 закрыты и ток через себя не пропускают.

В результате мы видим, что меняются знаки напряжения на вторичной обмотке трансформатора, а через нагрузку выпрямителя идет ток одного направления (см. график в). В таком выпрямителе полезно используются оба полупериода переменного тока, поэтому подобные выпрямители называют двухполупериодными.

И в заключении отметим, что работа двухполупериодного выпрямителя по сравнению с однопериодным получается намного эффективней:

1. Удвоилась частота пульсаций выпрямленного тока;2. Уменьшились провалы между импульсами, что облегчило задачу сглаживания пульсаций на выходе выпрямителя;3. Среднее значение напряжения постоянного тока примерно равно переменному напряжению, действующему во вторичной обмотке трансформатора.

А если такой выпрямитель дополнить фильтрующим электролитическим конденсатором, то им уже смело можно запитывать радиолюбительскую конструкцию.

Ну вот, мы с Вами практически и закончили изучать диоды. Конечно, в этих статьях дано далеко не все, а только основные понятия, но этих знаний Вам уже будет достаточно, чтобы собрать свою радиолюбительскую конструкцию для дома, в которой используются полупроводниковые диоды.

А в качестве дополнительной информации посмотрите видеоролик, в котором рассказывается, как проверить диодный мост мультиметром.

Удачи!

1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Горюнов Н.Н., Носов Ю.Р — Полупроводниковые диоды. Параметры, методы измерений. 1968г.
3. Пасынков В.В., Чиркин Л.К — Полупроводниковые приборы: Учеб. для вузов по спец. «Полупроводники и диэлектрики» и «Полупроводниковые и микроэлектронные приборы» — 4-е изд. перераб. и доп. 1987г.

Что это такое

В литературе дается следующее определение:

Стабилитрон или диод Зенера это прибор, предназначенный для стабилизации напряжения в электрических цепях. Работает при обратном смещении в режиме пробоя. До наступления пробоя имеет высокое сопротивление перехода. Протекающие при этом токи незначительны. Широко используются в электронике и в электротехнике.

Если говорить простыми словами, то стабилитрон предназначен для стабилизации напряжения в электронных схемах. В цепь он включается в обратном направлении. При достижении напряжения, превышающего напряжение стабилизации, происходит обратимый электрический пробой pn-перехода. Как только оно понизится до номинала, пробой прекращается, и стабилитрон закрывается.

На нижеприведенном рисунке представлена графическая схема для чайников, позволяющая понять принцип действия диода Зенера.

Основными преимуществами является невысокая стоимость и небольшие габариты. Промышленность выпускает устройства с напряжением стабилизации о 1,8 — 400 В в металлических, керамических или корпусах из стекла. Это зависит от мощности, на которую рассчитан стабилитрон и других характеристик.

Для стабилизации высоковольтного напряжения от 0,4 до нескольких десятков кВ, применяются стабилитроны тлеющего разряда. Они имеют стеклянный корпус и до появления полупроводниковых приборов применялись в параметрических стабилизаторах.

Аналогичными свойствами обладают приборы, меняющие свое сопротивление в зависимости от приложенного напряжения – это варисторы. Между стабилитроном и варистором разница заключается в том, что последний обладает двунаправленными симметричными характеристиками. А это значит, что в отличие от диодов, он не имеет полярности. Кратко варистор предназначен для обеспечения защиты от перенапряжения электронных схем.

Для предохранения аппаратуры от скачков напряжения применяют супрессоры. Между стабилитроном и супрессором отличия заключаются в том, что первый постепенно изменяет свое внутреннее сопротивление в зависимости от приложенного напряжения. Второй при достижении определенного порога напряжения открывается сразу. Т.е. его внутреннее сопротивление стремится к нулю. Основное назначение супрессоров — защита аппаратуры от скачков питания.

На рисунке ниже представлено условно графическое обозначение (УГО по ГОСТ) полупроводника и его вольт-амперная характеристика.

На рисунке цифрами указан участок 1-2. Он является рабочим и предназначен для стабилизации напряжения в цепях. Если прибор включить в прямом направлении, то он будет работать как обычный диод.

Рекомендуем посмотреть следующий видеоролик, чтобы подробнее изучить принцип действия стабилитрона, обозначение элементов и область их применения.

1.7. Вольтамперная характеристика и параметры стабилитрона

Напряжение на обратной ветви ВАХ
стабилитрона в области электрического
пробоя слабо зависит от значения
проходящего тока. Вольтамперная
характеристика стабилитрона приведена
на рисунке 6.

Рисунок 6 –
УГО стабилитрона и его вольтамперная
характеристика

Как видно, в области пробоя напряжение
на стабилитроне Uстлишь незначительно изменяется при
больших изменениях тока стабилизацииIст.
Такая характеристика используется для
получения стабильного (опорного)
напряжения.

Стабилитроны характеризуются следующими
параметрами:

  1. напряжение стабилизации Uст.

Напряжение, которое устанавливается
на выводах стабилитрона при протекании
через него обратного тока в пределах
Iст minIст
max,
называется напряжением стабилизации.
Напряжение стабилизацииUстнезначительно зависит от токаIст.
Напряжение стабилизации связано с
напряжением пробоя, но не равно ему, так
как ВАХ имеет определенную крутизну.

В общем случае Uстопределяется шириной запирающего слояp-n-перехода, то есть концентрацией
примесей в полупроводнике. В случае
большой концентрации примесиp-n-переход
получается тонким, и в нем даже при малых
напряжениях возникает электрическое
поле, вызывающее туннельный пробой. При
малой концентрации примесиp-n-переход
имеет значительную ширину, и лавинный
пробой наступает раньше. Иногда помимо
напряжения стабилизации нормируется
разброс величины напряжения стабилизации
ΔUстном,
представляющий собой максимально
допустимое отклонение напряжения
стабилизации от номинального для
стабилитронов одного типа.

  1. минимально допустимый ток стабилизации
    Iст min.

При малых обратных токах стабилитрон
работает на начальном участке вольтамперной
характеристики, где значение обратного
напряжения неустойчиво и может колебаться
в пределах от 0 до Uст.
Величина минимально допустимого тока
стабилизацииIст minзадает минимальный ток, при котором
гарантируется вводp-n-перехода
стабилитрона в режим устойчивого пробоя
и, как следствие, стабильное значение
напряжения стабилизацииUст.

  1. максимально допустимый ток стабилизации
    Iст max.

Максимально допустимый ток стабилизации
– это максимальный ток, при котором
гарантируется надежная работа
стабилитрона. Он определяется максимально
допустимой рассеиваемой мощностью
прибора. Рабочий ток стабилитрона (его
обратный ток) не должен превышать
максимально допустимого значения
Iст maxво избежание теплового пробоя
полупроводниковой структуры и выхода
стабилитрона из строя.

  1. номинальный ток стабилизации:

. (7)

  1. номинальное напряжение стабилизации
    Uст ном– падение напряжения на стабилитроне
    в области стабилизации при номинальном
    значении токаIст ном.

  2. динамическое (дифференциальное)
    сопротивление – отношение приращения
    напряжения стабилизации к вызвавшему
    его малому приращению тока:

. (8)

Чем меньше rд,
тем лучше стабилизация напряжения.

  1. статическое сопротивление стабилитрона
    Rств данной рабочей точке характеризует
    омические потери:

. (9)

  1. коэффициент качества стабилитрона:

. (10)

Коэффициент качества представляет
собой отношение относительного изменения
напряжения на стабилитроне к относительному
изменению тока. Качество стабилитрона
тем выше, чем меньше Q.

  1. температурный коэффициент напряжения
    стабилизации.

Температурный коэффициент напряжения
стабилизации αUстпоказывает, на сколько процентов
изменится относительное изменение
напряжения стабилизации при изменении
температуры окружающей среды на 1°C и
постоянном токе стабилизации:

,. (11)

В сильно легированных полупроводниках
вероятность туннельного пробоя с
увеличением температуры возрастает
из-за уменьшения ширины запрещённой
зоны. Поэтому напряжение стабилизации
у таких стабилитронов при нагревании
уменьшается, то есть они имеют отрицательный
температурный коэффициент напряжения
стабилизации ТКН.

В слабо легированных полупроводниках
при увеличении температуры уменьшается
длина свободного пробега носителей
вследствие возрастания рассеяния на
фононах решётки, что приводит к увеличению
порогового значения напряжения, при
котором начинается лавинный пробой.
Такие стабилитроны имеют положительный
ТКН.

Минимальный ТКН имеют кремниевые
стабилитроны с напряжением пробоя
5-7 В, когда туннельный и лавинный
пробои развиваются одновременно.

Путем последовательного соединения
двух или более p-n-переходов с
различными по знаку ТКН удается получить
прецизионные стабилитроны с ТКН не
более 0,0005 %/°C в широком диапазоне
температур.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации