Андрей Смирнов
Время чтения: ~14 мин.
Просмотров: 0

Тонкости работы со светодиодами, или для чего нужно охлаждение

Как подобрать радиатор?

Расчет радиатора для светодиода процесс не совсем простой, тем более для начинающего. Для его выполнения нужно знать тепловое сопротивление кристалла, а также перехода кристалл-подложка, подложка-радиатор, радиатор-воздух. Чтобы упростить решение многие пользуются соотношением 20-30 см2/Вт.

Это значит, что на каждый ватт LED света нужно использовать радиатор площадью порядка 30 см2.

Естественно, такое решение не является уникальным. Если ваша осветительная конструкция будет использоваться в подвальном прохладном помещении можно взять меньшую площадь, но при этом убедитесь, что температура светодиода в пределах нормы.

Предыдущие поколения LED комфортно чувствовали себя при температуре кристалла 50-70 градусов, новые светодиоды могут переноситьтемпературу до 100 градусов. Проще всего определить – прикоснуться рукой, если рука едва терпит – всё в порядке, а если кристалл может вас обжечь – принимайте решение для улучшения условий его работы.

Материалы для изготовления

Радиаторы для охлаждения светодиодов различаются по конструкции и материалу.

Окружающий воздух может принять не более 5-10 Вт с единичной поверхности

При выборе материала для изготовления радиатора следует принять во внимание выполнение следующего условия: теплопроводность его должна быть не менее 5-10 Вт. Материалы с меньшим параметром не смогут обеспечить передачу всего тепла, которое может принять воздух

Для изготовления радиаторов традиционно используют алюминий, медь или керамику. В последнее время появились изделия, выполненные из теплорассеивающих пластмасс.

Рекомендуем Вам также более подробно прочитать про импульсный блок питания своими руками.

Алюминиевые

Основным недостатком алюминиевого радиатора является многослойность конструкции. Это неизбежно приводит к возникновению переходных тепловых сопротивлений, преодолевать которые приходится с помощью применения дополнительных теплопроводящих материалов:

  • клейких веществ;
  • изолирующих пластин;
  • материалов, заполняющих воздушные промежутки и пр.

Алюминиевые радиаторы для светодиодов 1 вт

Медные

Медь обладает большей теплопроводностью, чем алюминий, поэтому в некоторых случаях ее использование для изготовления радиаторов оправдано. В целом же данный материал уступает алюминию в плане легкости конструкции и технологичности (медь – менее податливый металл).

Изготовление медного радиатора методом прессования – наиболее экономичным – невозможно. А обработка резанием дает большой процент отходов дорогостоящего материала.

Медные радиаторы

Керамические

Одним из наиболее удачных вариантов теплоотводчика является керамическая подложка, на которую предварительно наносятся токоведущие трассы. Непосредственно к ним и подпаиваются светодиоды. Такая конструкция позволяет отвести в два раза больше тепла по сравнению с металлическими радиаторами.

Лампочка с керамическим радиатором

Пластмассы теплорассеивающие

Все чаще появляется информация о перспективах замены металла и керамики на терморассеивающую пластмассу. Интерес к этому материалу понятен: стоит пластмасса намного дешевле алюминия, а ее технологичность намного выше. Однако теплопроводность обычной пластмассы не превышает 0,1-0,2 Вт/м.К. Добиться приемлемой теплопроводности пластмассы удается за счет применения различных наполнителей.

При замене алюминиевого радиатора на пластмассовый (равной величины) температура в зоне подвода температур возрастает всего на 4-5%. Учитывая, что теплопроводность теплорассеивающей пластмассы намного меньше алюминия (8 Вт/м.К против 220-180 Вт/м.К), можно сделать вывод: пластический материал вполне конкурентоспособен.

Лампочка с радиатором из термопластика

Таблица – Сравнение теплопроводности различных материалов
Материал Теплопроводность, Вт/м.К
Алюминий 120-240
Медь 401
Керамика 15-40; 100-200
Теплорассеивающие пластмассы 1 – 40
Термопаста 0,1 – 10

Типы радиаторов

Перед сборкой устройства необходимо определиться с типом используемого радиатора:

  • штыревой или игольчатый (Рис.5);
  • ребристый (Рис.4).

При необходимости естественного охлаждения источника света применяют первый тип, а в случае принудительного — второй. Обычно штыревой, при одинаковых размерах с ребристым, производительнее на 70 %.

Рис.4. Радиатор ребристый

Радиатор ребристого типа в основном применяют при активном способе отвода тепла. Но при определенных геометрических параметрах его используют в пассивном способе.

Рис.5. Радиатор игольчатый

Когда дистанция между иглами равна 4 мм, устройство предназначается для естественного теплоотвода, а при зазоре 2 мм радиатор укомплектовывают вентилятором.

Условия хранения

Хранить препарат следует в недоступном для детей, защищенном от влаги месте при температуре до 25°C.

Сделать своими руками

Радиолюбители редко берутся за изготовление радиаторов, поскольку этот элемент – вещь ответственная, напрямую влияющая на долговечность светодиода. Но в жизни бывают разные ситуации, когда приходится мастерить теплоотводчик из подручных средств.

Вариант 1

Самая простая конструкция самодельного радиатора – круг, вырезанный из листа алюминия с выполненными на нем надрезами. Полученные сектора немного отгибаются (получается нечто, похожее на крыльчатку вентилятора).

По осям радиатора отгибаются 4 усика для крепления конструкции к корпусу лампы. Светодиод можно закрепить через термопасту саморезами.

Вариант 1 – самодельный радиатор из алюминия

Вариант 2

Радиатор для светодиода можно изготовить своими руками из куска трубы прямоугольного сечения и алюминиевого профиля.

Необходимые материалы:

  • труба 30х15х1,5;
  • пресс-шайба диаметром 16 мм;
  • термоклей;
  • термопаста КТП 8;
  • профиль 265 (Ш-образный);
  • саморезы.

В трубе для улучшения конвекции сверлятся три отверстия диаметром 8 мм, а в профиле – отверстия диаметром 3,8 мм – для его крепления саморезами.

В местах соединения деталей радиатора наносится слой термопасты КТП 8. Затем производится сборка конструкции с помощью саморезов с пресс шайбой.

Способы крепления светодиодов к радиатору

Светодиоды прикрепляют к радиаторам двумя способами:

  • механическим;
  • приклеиванием.

Приклеить светодиод можно на термоклей. Для этого на металлическую поверхность наносится капелька клеящей массы, затем на нее садится светодиод.

Однако большинство радиолюбителей предпочитают механическое крепление светодиодов. Сейчас выпускаются специальные панели, с помощью которых можно быстро и надежно смонтировать светодиод.

В некоторых моделях предусмотрены зажимы для вторичной оптики. Монтаж выполняется просто: на радиатор устанавливается светодиод, на него – панелька, которая крепится к основанию саморезами.

Но не только радиаторы для светодиода можно изготовить самостоятельно. Любителям заниматься растениями рекомендуем ознакомиться со светодиодной .

Качественное охлаждение светодиода является залогом долговечности светодиода. Поэтому к подбору радиатора следует подходить со всей серьезностью. Лучше всего использовать готовые теплообменники: они продаются в магазинах радиотоваров. Стоят радиаторы недешево, зато легко монтируются и светодиод защищает от избытка тепла надежнее.

Светодиоды считаются одним из наиболее эффективных источников света, их световой поток доходит до фантастических значений, порядка 100 Лм/Вт. Люминесцентные лампы выдают в два раза меньше, а именно 50-70 Лм/Вт. Однако для долгой работы светодиода нужно выдерживать их тепловые режимы. Для этого применяются фирменные или самодельные радиаторы для светодиодов.

Как закрепить светодиод

Существует два основных способа крепления, рассмотрим оба из них.

Первый способ

– это механический. Он заключается в том, чтобы прикрутить светодиод саморезами или другим крепежом к радиатору, для этого нужна специальная подложка типа «звезда» (см. star). К ней припаивается диод, предварительно смазанный термопастой.

На «пузе» у светодиода есть специальный контактный пятачок диаметром как сигарета типа slim. После чего к этой подложке припаиваются питающие провода, и она прикручивается к радиатору. Некоторые светодиоды поступают в продажу уже закреплённые на переходной пластине, как на фото.

Второй способ

– это клеевой. Он пригоден как и для монтажа через пластину, так и без неё. Но метал к металлу крепить не всегда получается, чем приклеить светодиод к радиатору? Для этого нужно приобрести специальный термопроводящий клей. Он может встречаться как в хозяйственной, так и в магазине радиодеталей.

Выглядит результат такого крепления следующим образом.

Материал для изготовления теплоотводчика

Срок службы светодиодов непосредственно зависит от того, какой материал задействован в полупроводнике, а также от качественности работы системы охлаждения. При выборе материала для теплоотводчика, необходимо руководствоваться следующим:

  • материал должен иметь теплопроводность не менее 5-10 Вт;
  • уровень теплопроводности должен быть выше 10 Вт.

В связи с этим, для изготовления теплоотводчика стоит использовать такие материалы:

алюминий. Алюминиевый вариант на сегодняшний день для охлаждения светодиодов используют чаще всего. Но при этом алюминиевый теплоотводчик имеет существенный минус – состоит из ряда слоев. В результате такого строения алюминиевый аппарат провоцирует тепловые сопротивления. Их преодолеть можно только с помощью дополнительных теплопроводных материалов, в роли которых может выступать изоляционные пластины;

Алюминиевый радиатор

  • керамика. Керамические теплоотводчики имеют специальные трассы, по которым проводится ток. К этим же трассам припаиваются светодиоды. Такие изделия способны отводить в два раза больше тепла;
  • медь. Здесь имеется медная пластинка. Ее отличает более высокая теплопроводность, нежели у алюминия. Но медь уступает алюминию в технических характеристиках и весе. При этом медь — не податливый металл, а после обработки остается много обрезков;

Радиатор из меди

пластмасса. К достоинствам стоит отнести доступную стоимость, а также высокий уровень технологичности. При этом в минусах здесь меньшая теплопроводность.

Тепловые трубки и паровые камеры.

Тепловые трубки и паровые камеры являются пассивными и имеют эффективную теплопроводность в диапазоне от 10000 до 100000 Вт / м К. Они могут обеспечить следующие преимущества в управлении температурой на светодиодах:

  • Передача тепла к внешнему радиатору с минимальным падением температуры
  • Изотермизация естественного конвекционного радиатора, повышение его эффективности и уменьшение его размеров. В одном случае добавление пяти тепловых трубок уменьшило массу радиатора на 34%, с 4,4 кг до 2,9 кг.
  • Эффективно преобразуйте высокий тепловой поток непосредственно под светодиодом в более низкий тепловой поток, который может быть легко удален.

Радиатор для светодиодов. PCB (печатная плата)

  • MCPCB – MCPCB ( PCB с металлической подложкой – это те платы, которые содержат материал подложки из металла в качестве распределителя тепла в качестве неотъемлемой части печатной платы. Металлическая подложка обычно состоит из алюминиевого сплава. Кроме того, MCPCB может использовать преимущество диэлектрического полимерного слоя с высокой теплопроводностью для снижения теплового сопротивления.
  • Разделение – отделение цепи привода светодиодов от платы светодиодов предотвращает повышение температуры, генерируемой драйвером, от повышения температуры соединения светодиодов.

Охлаждение своими руками

Простейшим примером радиатора будет «солнышко», вырезанное из жести или листа алюминия. Такой радиатор может охладить 1-3Вт светодиодов. Скрутив два таких листа между собой через термопасту, можно увеличить площадь теплоотдачи.

Это банальный радиатор из подручных средств, он получается довольно тонким и использовать его для более серьёзных светильников нельзя.


Сделать своими руками радиатор для светодиода на 10W таким образом будет невозможно. Поэтому можно применить для таких мощных источников света радиатор от центрального процессора компьютера.

Если если оставить кулер, активное охлаждение светодиодов позволит использовать и более мощные LED. Такое решение создаст дополнительный шум от вентилятора и потребует дополнительного питания, плюс периодическое ТО кулера.

Площадь радиатора для 10Вт светодиода будет довольно большой – порядка 300см 2 . Хорошим решением будет использование готовых алюминиевых изделий. В строительном или хозяйственном магазине вы можете приобрести алюминиевый профиль и использовать его для охлаждения мощных светодиодов.

Сделав сборку нужной площади из таких профилей, вы можете получить неплохое охлождение, не забудьте все стыки промазать хотя бы тонким слоем термопасты. Стоит сказать, что есть специальный профиль для охлаждения, который выпускается промышленно самых разнообразных видов.

Если у вас нет возможности сделать радиатор охлаждения светодиодов своими руками вы можете поискать подходящие экземпляры в старой электронной аппаратуре, даже в компьютере. На материнской плате расположены несколько. Они нужны для охлаждения чипсетов и силовых ключей цепей питания. Отличный пример такого решения изображен на фото ниже. Их площадь обычно от 20 до 60см 2 . Что позволяет охлаждать светодиод мощностью 1-3 Вт.

Еще один интересный вариант изготовления радиатора из листов алюминия. Такой метод позволит набрать практически любую необходимую площадь охлаждения. Смотрим видео:

Формула расчета радиатора

Это естественно, что многим не хочется из-за пары приборов вникать в столь сложные дебри формул и таблиц, которых нужно пересмотреть огромное множество. Но как сделать расчет? Существует более упрощенный вариант вычислений. Конечно, он немного поверхностен и не учитывает некоторых факторов, но все же рассчитать размеры теплоотводящего элемента, хоть и примерно, поможет.

Если принять то, что S в данной формуле является площадью охлаждающего элемента (в кв. см), то выглядеть она будет следующим образом: Rθsa = 50/√S.

Необходимо подставить в нее площадь радиатора, не забывая учесть и ребра, и боковые грани, и можно получить данные элемента охлаждения по его теплопроводному сопротивлению.

Ну а по следующей формуле можно вычислить параметры мощности рассеивания: Pт = (Tj-Ta)/Rθja.

Т. к. это наилегчайший способ вычисления, и он не учитывает множество нюансов, то получившиеся данные можно смело умножить на погрешность, т. е. на 0.7.

Как закрепить светодиод

Существует два основных способа крепления, рассмотрим оба из них.

Первый способ – это механический. Он заключается в том, чтобы прикрутить светодиод саморезами или другим крепежом к радиатору, для этого нужна специальная подложка типа «звезда» (см. star). К ней припаивается диод, предварительно смазанный термопастой.

На «пузе» у светодиода есть специальный контактный пятачок диаметром как сигарета типа slim. После чего к этой подложке припаиваются питающие провода, и она прикручивается к радиатору. Некоторые светодиоды поступают в продажу уже закреплённые на переходной пластине, как на фото.

Второй способ – это клеевой. Он пригоден как и для монтажа через пластину, так и без неё. Но метал к металлу крепить не всегда получается, чем приклеить светодиод к радиатору? Для этого нужно приобрести специальный термопроводящий клей. Он может встречаться как в хозяйственной, так и в магазине радиодеталей.

Выглядит результат такого крепления следующим образом.

Материал для изготовления теплоотводчика

Срок службы светодиодов непосредственно зависит от того, какой материал задействован в полупроводнике, а также от качественности работы системы охлаждения.
При выборе материала для теплоотводчика, необходимо руководствоваться следующим:

  • материал должен иметь теплопроводность не менее 5-10 Вт;
  • уровень теплопроводности должен быть выше 10 Вт.

В связи с этим, для изготовления теплоотводчика стоит использовать такие материалы:

алюминий. Алюминиевый вариант на сегодняшний день для охлаждения светодиодов используют чаще всего. Но при этом алюминиевый теплоотводчик имеет существенный минус – состоит из ряда слоев. В результате такого строения алюминиевый аппарат провоцирует тепловые сопротивления. Их преодолеть можно только с помощью дополнительных теплопроводных материалов, в роли которых может выступать изоляционные пластины;

Алюминиевый радиатор

  • керамика. Керамические теплоотводчики имеют специальные трассы, по которым проводится ток. К этим же трассам припаиваются светодиоды. Такие изделия способны отводить в два раза больше тепла;
  • медь. Здесь имеется медная пластинка. Ее отличает более высокая теплопроводность, нежели у алюминия. Но медь уступает алюминию в технических характеристиках и весе. При этом медь — не податливый металл, а после обработки остается много обрезков;

Радиатор из меди

пластмасса. К достоинствам стоит отнести доступную стоимость, а также высокий уровень технологичности. При этом в минусах здесь меньшая теплопроводность.

Типы радиаторов

Некоторые соображения относительно пассивных тепловых конструкций, т.е радиаторов для светодиодов, для обеспечения хорошего управления температурой при работе светодиодов высокой мощности включают в себя:

Клей

Клей обычно используется для склеивания светодиодов и платы, а также платы и радиаторов. Использование теплопроводящего клея может дополнительно оптимизировать тепловые характеристики.

Радиатор

Радиаторы обеспечивают путь для прохождения тепла от светодиодного источника к внешней среде. Радиаторы могут рассеивать энергию тремя способами: проводимость (передача тепла от одного тела к другому), конвекция (передача тепла от твердого тела к движущейся жидкости, которая для большинства применений СИД будет воздухом) или излучение (передача тепла от двух тел различных температур поверхности через тепловое излучение ).

  • Материал – Теплопроводность материала, из которого сделан радиатор, напрямую влияет на эффективность рассеивания за счет теплопроводности. Обычно это алюминий , хотя медь может использоваться с преимуществом для плоских радиаторов. Новые материалы включают термопласты, которые используются, когда требования к теплоотдаче ниже, чем нормальные, или сложная форма получит преимущество от литья под давлением, а также решения из натурального графита, которые обеспечивают лучшую теплопередачу, чем медь, с меньшим весом, чем алюминий, плюс возможность формования в комплекс. двумерные фигуры. Графит считается экзотическим решением для охлаждения и имеет более высокую стоимость производства.
  • Форма – Термический перенос происходит на поверхности радиатора. Поэтому радиаторы должны иметь большую площадь поверхности. Эта цель может быть достигнута путем использования большого количества мелких ребер или увеличения размера самого радиатора.

Зависимость теплопроводности радиатора для светодиодов от формы

Хотя большая площадь поверхности приводит к лучшей эффективности охлаждения, между ребрами должно быть достаточно места, чтобы создать значительную разницу температур между ребром и окружающим воздухом. Когда ребра стоят слишком близко друг к другу, воздух между ними может стать почти такой же температуры, как ребра, так что передача тепла не произойдет. Следовательно, большее количество ребер не обязательно приводит к лучшей производительности охлаждения.

  • Отделка поверхности – тепловое излучение радиаторов является функцией отделки поверхности, особенно при более высоких температурах. Окрашенная поверхность будет иметь большую излучательную способность, чем яркая, неокрашенная. Эффект наиболее заметен в плоских радиаторах, где около трети тепла рассеивается излучением. Кроме того, идеально плоская область контакта позволяет использовать более тонкий слой термопласта, что уменьшит тепловое сопротивление между радиатором и светодиодным источником. С другой стороны, анодирование или травление поверхности контакта также уменьшает тепловое сопротивление.
  • Способ монтажа – крепления радиатора с помощью винтов или пружин часто лучше, чем обычные зажимы, теплопроводящий клей или клейкая лента.

Для теплообмена между светодиодными источниками мощностью более 15 Вт и радиатором рекомендуется использовать материал теплопроводности интерфейса с высокой теплопроводностью (TIM), который создаст тепловое сопротивление на границе раздела ниже 0,2 К / Вт. В настоящее время наиболее распространенным решением является и материал с фазовым переходом , который наносится в виде твердой прокладки при комнатной температуре, но затем превращается в густую желатиновую жидкость, когда она поднимается выше 45 ° C.

Зачем диодам нужно охлаждение?

Несмотря на высокие показатели светоотдачи светодиоды излучают света примерно на треть потребляемой мощности, а остальное выделяется в тепло. Если диод перегревается структура его кристалла нарушается, начинает деградировать, световой поток снижается, а степень нагрева лавинообразно увеличивается.

Причины перегрева светодиодов:

  • Слишком большой ток;
  • плохая стабилизация питающего напряжения;
  • плохое охлаждение.

Первые две причины решаются применением качественного источника питания для светодиодов. Такие источники часто называют драйвер для светодиода. Их особенность заключается не в стабилизации напряжения, а именно в стабилизации выходного тока.

Дело в том, что при перегреве сопротивление светодиода снижается и ток, протекающий через него, возрастает. Если в качестве блока питания использовать стабилизатор напряжения – процесс получится лавинообразным: больше нагрев – больше ток, а больший ток – это больший нагрев и так по кругу.

Стабилизируя ток, вы отчасти стабилизируете и температуру кристалла. Третья причина – это плохое охлаждение для светодиодов. Рассмотрим этот вопрос подробнее.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации