Андрей Смирнов
Время чтения: ~22 мин.
Просмотров: 0

Профиль крыла самолета: виды, технические и аэродинамические характеристики, метод расчета и наибольшая подъемная сила

Рекомендуем

Самолёты без реверсивного устройства

Большое количество самолётов не нуждается в реверсе, или реверс сложно реализовать технически. Так например, в связи с особенностями механизации крыла и чрезвычайно эффективными воздушными тормозами в хвосте не требуется включать реверс при приземлении. Соответственно, все четыре двигателя не работают в режиме реверса. По этой же причине в реверсивном устройстве не нуждается самолёт Як-42. В то же время многие самолёты с форсажными камерами (военного назначения) не имеют реверса, в связи с чем их послепосадочный пробег велик. Данное обстоятельство вынуждает строить ВПП большей длины, в конце ВПП устанавливать аварийные устройства торможения, а на сами самолёты устанавливать высокоэффективные колёсные тормоза и тормозные парашюты. Необходимо отметить, что тормоза и пневматики таких самолётов подвержены большому износу и требуют частой замены, а в случае применения парашютов требуется организация дополнительных служб по техническому обеспечению и обслуживанию ТП.

Примечания

  1. ↑ . Проверено 1 июня 2010. 10 февраля 2012 года.
  2. ↑  (недоступная ссылка — ). Проверено 1 июня 2010. 2 сентября 2009 года.
  3. ↑ . Проверено 1 июня 2010. 10 февраля 2012 года.
  4. ↑ Предкрылок // Авиация. Энциклопедия / Гл. ред. Г. П. Свищев. — Большая Российская энциклопедия, 1994. — С. 445. — 736 с. — ISBN 5-85270-086-X.
  5. ↑ . Проверено 1 июня 2010. 10 февраля 2012 года.
Компоненты летательного аппарата (ЛА)
Конструкция планера ЛА
  • Аварийная авиационная турбина
  • V-образное оперение
  • ВСУ
  • Гидравлическая система
  • Гаргрот
  • Гермокабина
  • Гермошпангоут
  • Гондола
  • Головной обтекатель
  • Стабилизатор
  • Задняя кромка крыла
  • Зализ
  • Кабина
  • Киль
  • Кессон
  • Корень крыла
  • Крыло
  • Лонжерон
  • Мотогондола
  • Нервюра
  • Обшивка
  • Носок крыла
  • Оперение
  • Подкос
  • Расчалка
  • Стабилизатор
  • Планер летательного аппарата
  • Противообледенительная система
  • Противопожарное оборудование
  • Рампа
  • Система отбора воздуха
  • Система кондиционирования
  • Стойка
  • Стрингер
  • Технический отсек
  • Фонарь кабины
  • Фюзеляж
  • Центроплан
Элементы управления полётом
  • NOTAR
  • Автомат перекоса
  • Аэродинамический тормоз
  • Боковая ручка
  • Вибросигнализатор штурвала
  • Крутка крыла
  • Руль высоты
  • Руль направления
  • Рулевой винт
  • Ручка управления самолётом
  • Сервокомпенсатор
  • Спойлер (интерцептор)
  • Спойлерон
  • Стопор рулей
  • Толкатель штурвальной колонки
  • Триммер
  • Флаперон
  • Фенестрон
  • ЦПГО
  • Штурвал
  • Элевоны
  • Элероны
Аэродинамика имеханизация крыла
  • ACTE
  • Адаптивное управляемое крыло
  • Активное аэроупругое крыло
  • Аэродинамический гребень
  • Бесхвостка
  • Вибрирующий предкрылок
  • Гребень крыла
  • Законцовка крыла
  • Кольцевое крыло
  • Крыло изменяемой стреловидности
  • Крыло обратной стреловидности
  • Наплыв крыла
  • Пластинчатый турбулизатор
  • Предкрылки
  • Роторный предкрылок
  • Утка
  • Щиток Крюгера
Бортовое радиоэлектронноеоборудование (БРЭО)
  • ACAS
  • GPS
  • БРЛС
  • Доплеровский измеритель скорости и сноса
  • TCAS
  • Радиовысотомер
  • Радиодальномер
  • Радиокомпас
  • Радиотехническая система ближней навигации
  • Речевой информатор
  • Самолётный радиолокационный ответчик
  • Самолётное переговорное устройство
  • GPWS
  • Станция предупреждения об облучении
Авиационное оборудование (АО)
  • EFIS
  • Автопилот
  • Авиационный электропривод
  • Автомат углов атаки и сигнализации перегрузок
  • Автомат тяги
  • АБСУ
  • INS
  • Авиагоризонт
  • БРЛС
  • Бортовая СЭС ЛА
  • Вариометр
  • Высотомер
  • Гировертикаль
  • Датчик угловой скорости
  • Демпфер рыскания
  • ИЛС
  • Индикатор отклонения курса
  • Кислородное оборудование
  • Компас
  • Корректор высоты
  • Курсовертикаль
  • Командно-пилотажный прибор
  • Навигационные огни
  • Плановый навигационный прибор
  • Приборная доска
  • Приёмник воздушного давления
  • Бортовые огни
  • Система воздушных сигналов
  • Система аварийной подачи кислорода
  • Система управления воздухозаборником
  • Система траекторного управления
  • Сигнальное табло
  • Система управления полётом самолёта
  • Стеклянная кабина
  • Сигнализатор обледенения
  • Указатель курса
  • Указатель поворота и скольжения
  • Указатель скорости
  • Система сигнализации пожара в авиации
  • ЭДСУ
  • FADEC
Силовая установка итопливная система (СУ и ТС)
  • EICAS
  • Воздушный винт
  • Кок
  • Кольцо Тауненда
  • Конус воздухозаборника
  • Обтекатель NACA
  • Несущий винт
  • ПАЗ
  • Пластинчатый отсекатель
  • Подвесной топливный бак
  • Привод постоянных оборотов
  • Реверс
  • РУД
  • Сверхзвуковой воздухозаборник
  • Топливный бак
  • Топливная система летательного аппарата
  • Управление вектором тяги
  • Форсажная камера
Взлётно-посадочные устройства
  • Автомат торможения
  • Гидравлический амортизатор
  • Демпфер шимми
  • Закрылок
  • Закрылок Гоуджа
  • Закрылок со сдувом пограничного слоя
  • Парашютно-тормозная установка
  • Тормозной гак
  • Тормоз колеса
  • Шасси
Системы аварийногопокидания и спасения (САПС)
  • Катапультируемое кресло
  • Спасательная капсула
Системы авиационноговооружения и обороны (АВ)
  • Бомбодержатель
  • Бомбовый прицел
  • Грузоотсек
  • Узел подвески вооружения
  • Средства инфракрасного противодействия
Бытовое оборудование
  • Бортовой туалет
  • Бортовой трап
  • Развлекательная система
Средства объективного контроля
  • Аэрофотоаппарат
  • Бортовой самописец
  • Бортовые средства объективного контроля
  • Статоскоп
  • Фотопулемёт
Функционально связанныесистемы ЛА

Эта страница в последний раз была отредактирована 18 октября 2018 в 00:20.

Готическая архитектура

С использованием этого стиля повсеместно начали строить сооружения еще с конца XII века и продолжали практически до начала XVI. Таким образом, на протяжении практически четырех веков строители и архитекторы оттачивали мастерство создания.

Именно готический храм явился местом практического применения всех математических и геометрических познаний предыдущих поколений.

Учитывая несовершенство технологий, строительство в основном затягивалось на многие десятилетия, а иногда даже и столетия. Общество той эпохи не могло позволить себе такие задержки в развитии религиозной жизни. Поэтому богослужения начинались уже в первые годы начала строительства, как только была возведена алтарная часть и места для хора.

Что удивительно, изначально термин «готика» зародился как ругательный, и он описывал отношение ко всему варварскому и непривычному. Однако со временем он трансформировался и стал использоваться для определения культового религиозного стиля.

Выделяются такие виды этой архитектуры: ранняя, зрелая и поздняя готика. Некоторые источники также отмечают неоготику как правопреемницу готики классической.

Что же является основными элементами готической архитектуры? Прежде всего, это нервюры и аркбутаны, а также столбы, поддерживающие стрельчатые арки.

Нервюра — это характерная стрельчатая арка, а аркбутаны являют собой открытые полуарки.

Внешние стены отделывались сложными орнаментами и скульптурами. А свет следовал через большие окна, которые инкрустировались удивительными витражами.

Нервюра в архитектуре призвана облегчить свод и расширить оконные проёмы. В будущем тот же принцип начали применять и в авиастроении.

Обтяжка и сборка кордовой модели Primary Force

Модель практически готова, Крыло, стабилизатор, рули и закрылки можно обтянуть само-клеющейся пленкой. Перед тем как обклеивать фюзеляж, следует моторную часть промазать двух компонентным лаком, или метаноло-стойким лаком. И только после этого обтягивать фюзеляж.

Обтяжка Primary Force

В таком виде модель похожа на Kit набор для сборки. Именно в таком виде третья моя модель Primary Force полетела в Россию к новому хозяину. Дальше он уже сам собирал модель.

Kit — набор Primary Force ручной работы от clstunt.ru

Сборка модель плавно идет к окончанию, устанавливаются стальные стойки шасси, монтируется микродвигатель.

Готовая кордовая модель

На фото ниже можно увидеть как крепится топливный бак а так же как реализован выкос из круга для мотора. Шасси использовались еще советские диаметром 51 мм. К слову шасси порядком жесткие и со временем были заменены на более мягкие. С мягкой резиной посадка на нашу поверхность происходила лучше.

Механизация крыла


Основные части механизации крыла

Основная статья: Механизация крыла

  • 1 — законцовка крыла
  • 2, 3 —корневые и концевые элероны
  • 4 — обтекатели механизма привода закрылков
  • 5, 6 — предкрылки
  • 7 — корневой (или внутренний) трёхщелевой закрылок
  • 8 — внешний трёхщелевой закрылок
  • 9 — интерцептор
  • 10 — интерцептор/спойлер

Закрылки

Закрылки

Положение закрылков (сверху вниз)

  • 1 — Наибольшая эффективность (набор высоты, горизонтальный полёт, снижение)
  • 2 — Наибольшая площадь крыла (взлёт)
  • 3 — Наибольшая подъёмная сила, высокое сопротивление (заход на посадку)
  • 4 — Наибольшее сопротивление, уменьшенная подъёмная сила (после посадки)

Складывающееся крыло

Сложенная правая консоль крыла Як-38

К конструкции со складывающимся крылом прибегают в том случае, когда хотят уменьшить габариты при стоянке воздушного судна. Наиболее часто такое применение встречается в палубной авиации (Су-33, Як-38, F-18, Bell V-22 Osprey), но и рассматривается иногда для пассажирских ВС (КР-860, Boeing 777X).

См. также: Палубная авиация

Конструктивно-силовые схемы крыла

По конструктивно-силовой схеме крылья делятся на ферменные, лонжеронные, кессонные.

Ферменное крыло

Конструкция такого крыла включает пространственную ферму, воспринимающую силовые факторы, нервюры и обшивку, передающую аэродинамическую нагрузку на нервюры.
Не следует путать ферменную конструктивно-силовую схему крыла с лонжеронной конструкцией, включающей лонжероны и (или) нервюры ферменной конструкции.
В настоящее время крылья ферменной конструкции практически не применяются.

Лонжеронное крыло

Лонжероны выделены красным цветом

Фрагмент крыла поршневого истребителя Ла-5, вертикально на фото идут нервюры

Лонжеронное крыло включает один или несколько продольных силовых элементов — лонжеронов, которые воспринимают изгибающий момент. Помимо лонжеронов, в таком крыле могут присутствовать продольные стенки. Они отличаются от лонжеронов тем, что панели обшивки с стрингерным набором крепятся к лонжеронам. Лонжероны передают нагрузку на шпангоуты фюзеляжа самолёта с помощью моментных узлов.

Кессонное крыло

В кессонном крыле основную нагрузку воспринимают как лонжероны, так и обшивка. В пределе лонжероны вырождаются до стенок, а изгибающий момент полностью воспринимается панелями обшивки. В таком случае конструкцию называют моноблочной. Силовые панели включают обшивку и подкрепляющий набор в виде стрингеров или гофра. Подкрепляющий набор служит для обеспечения отсутствия потери устойчивости обшивки от сжатия и работает на растяжение-сжатие вместе с обшивкой.
Кессонная конструкция крыла требует наличия центроплана, к которому крепятся консоли крыла. Консоли крыла стыкуются с центропланом при помощи контурного стыка, обеспечивающего передачу силовых факторов по всей ширине панели.

Закрылки самолета. Основные виды.

Закрылки – первая из придуманных разновидностей механизации крыла, они же и наиболее эффективны. Они широко применялись еще до Второй Мировой войны, а на ее протяжении и после их конструкция была доработана и, также, были изобретены новые виды закрылок. Основными характеристиками, которые указывают на то, что это закрылок действительно является им – его расположение и манипуляции, которые с ним происходят. Закрылки всегда находятся на задней кромке крыла и всегда опускаются вниз, и, к тому же, могут выдвигаться назад. При опускании закрылка увеличивается кривизна крыла, при его выдвижении – площадь. А раз подъемная сила крыла прямо пропорциональна его площади и коэффициенту подъемной силы, то если обе величины увеличиваются, закрылок выполняет свою функцию наиболее эффективно. По  своему устройству и манипуляциям закрылки делятся на:

  • простые закрылки (самый первый и самый простой вид закрылок)
  • щитовые закрылки
  • щелевые закрылки
  • закрылки Фаулера (наиболее эффективный и наиболее широко применяемый в гражданской авиации вид закрылок)

Каким образом функционируют все вышеперечисленные закрылки показано на схеме. Простой закрылок, как видно из схемы, просто отклоняемая вниз задняя кромка крыла. Таким образом, кривизна крыла увеличивается, однако  область низкого давления над крылом уменьшается, потому простые закрылки менее эффективны, чем щитовые, верхняя кромка которых не отклоняется и область низкого давления не теряет в размерах.

Щелевой закрылок получил свое название по причине образуемой им щели после отклонения. Эта щель позволяет проходить воздушной струе к области низкого давления и направлена она таким образом, чтобы предотвращать срыв потока (процесс, во время которого величина подъемной силы резко падает), придавая ему дополнительную энергию.

Закрылок Фоулера выдвигается назад и вниз, чем увеличивает и площадь и кривизну крыла. Как правило, он сконструирован таким образом, чтобы при его выдвижении еще и создавалась щель, или две, или даже три. Соответственно он выполняет свою функцию наиболее эффективно и может давать прирост в подъемной силе до 100%.

Предкрылки. Основные функции. 

Предкрылки – отклоняемые поверхности на передней кромке крыла. По своему строению и функциям они схожи с закрылками Фаулера – отклоняются вперед и вниз, увеличивая кривизну и немного площадь, образуют щель, для прохода воздушного потока к верхней кромке крыла, чем способствуют увеличению подъемной силы. Предкрылки, просто отклоняемые вниз, которые не создают щели называются отклоняемыми носками и только увеличивают кривизну крыла.

Спойлеры и их задачи. 

Спойлеры. Перед рассмотрением спойлеров, следует заметить, что при создании дополнительной подъемной силы всеми вышеперечисленными устройствами создается дополнительное лобовое сопротивление, что ведет к понижению скорости. Но это происходит как следствие повышения подъемной силы, в то время как задача спойлеров – конкретно значительное повышение лобового сопротивления и прижимание самолета к земле после касания. Соответственно это единственное устройство механизации крыла, которое находится на верхней его поверхности и отклоняется вверх, чем и создается прижимная сила.

А зачем же нужно увеличивать подъемную силу? Вообще требуется не столько увеличение подъемной силы, сколько уменьшение скорости самолета, по крайней мере в гражданской авиации. А поскольку эти две величины непосредственно связаны, потому и происходит одно за счет другого.

Уменьшение скорости необходимо при взлете и посадке для обеспечения большей безопасности и уменьшения длины взлетной полосы. Кроме того, боевым самолетам довольно часто при выполнении того или иного маневра необходимо очень быстро увеличить либо уменьшить подъемную силу, для чего и служит механизация крыла.

Выбор правильного аэродинамического профиля

Выбор правильного профиля определяет правильное поведение самолёта в воздухе. Ниже я привожу ссылку на простой и доступный инструмент для проверки аэродинамических профилей. В качестве основы для выбора профилей я выбрал концепцию, согласно которой длина хорды на законцовке крыла равна половине длины хорды в корневой части. Наилучшее решение того, чтобы не допустить срыв потока на крыле, которое я нашел, заключалось в резком сужении крыла на законцовке без возможности сохранения управления самолётом до набора достаточной скорости. Я добился этого с помощью разворота крыла вниз на конце и через тщательный подбор корневых и концевых профилей.

В корне я выбрал аэродинамический профиль S8036 с толщиной крыла в 16% от длины хорды. Такая толщина позволила заложить лонжерон достаточной прочности, а также выдвижные шасси внутри крыла. Для концевой части был выбран профиль – S8037, который также имеет толщину в 16% от толщины хорды. Такое крыло будет уходить в срыв при большом коэффициенте подъёмной силы, а также при большем угле атаки, чем S8036 при том же числе Рейнольдса (этот термин служит для сравнения профилей разного размера: чем больше число Рейнольдса, тем больше хорда). Это значит, что при том же числе Рейнольдса в корневой части крыла срыв произойдет быстрее, чем на законцовке, но контроль за управлением сохранится. Однако, даже если длина хорды корня в два раза больше длины хорды законцовки, она имеет число Рейнольдса в два раза большее, а увеличение числа приведет к задерживанию сваливания. Именно поэтому, я развернул законцовку крыла вниз, так что оно перейдет в сваливание только после корневой части.

Ресурс для определения аэродинамических профилей: airfoiltools.com

Нервюра

Нервюры устанавливают по ложементам стапеля, затем их крепят к лонжерону и врезают стрингеры.

Конструкционные схемы стреловидных крыльев.| Использование максимальной подъемной силы при посадке самолетами с треугольным крылом ( аПос — посадочный угол атаки, применяемый на практике.

Нервюры чаще всего ставятся по потоку. Силовые элементы работают так же, как соответствующие элементы других конструкций крыльев.

Нервюры сохраняют заданную форму крыла, передают приходящиеся на них нагрузки ( от воздушных и массовых сил) на лонжероны и обшивку; являясь опорами обшивки и стрингеров, повышают их критические напряжения.

Нервюры, стрингеры, лонжероны, перегородки, внутренняя поверхность обшивок, трубопроводы, баки и прочие детали работают в условиях повышенной влажности, обусловленной конденсацией влаги, а также попаданием дождя в неплотности обшивки.

Нервюра в данном случае состоит из двух частей, к-рые до обтяжки фанерой приклеиваются к лонжерону.

Нервюра — арка из тесаных клинчатых камней, укрепляющая ребра свода; то же, что гурт. Система нервюр ( главным образом в архитектуре готики) образует каркас, облегчающий кладку свода.

Нервюры без малки или с постоянной малкой обрабатывают в подкладных приспособлениях.

Корневые нервюры ( 2 — 3 на схемах а, б и 3 — 4 на схеме е) служат в крыльях лонжеронной схемы для снятия с обшивки консоли крыла касательных сил от крутящего момента.

Нервюры среднего или тонкого профиля в металлич. Деревянные нервюры делают или ферменными из брусков с кницами из фанеры или же с ребром из листовой фанеры и полками из сосны, спруса или липы. Внутренняя расчалка крыльев с жесткой ( металлической или фанерной) обшивкой, напр, крыло самолета Стоут-форд или самолета Фоккер Д16, осуществляется самой о бшивкой, в то время как при полотняном покрытии она обыкновенно состоит из распорных усиленных нервюр и прутковых растяжек. Наружную расчалку бипланных коробок крыльев в настоящее время делают исключительно из профилированных лент-расчалок обтекаемого сечения. В тех случаях, когда ставятся жесткие подкосы, они бывают из труб обтекаемого сечения.

Нервюру также можно представить как тонкостенную балку переменной высоты, и к ней в равной степени применимо все то, что было сказано об идеализации лонжерона.

Обрабатывается нервюра цилиндрической шарошкой, установленной в оправке.

Каркас нервюры собирается в приспособлениях с БИНТОВОЙ, эксцентриковой и пневматической запрессовками. Основанием его служит сосновый щит, фанерованный 3 — 4 мм фанерой с обеих сторон.

Каркасы нервюр фанеруют в пневматическом прессе для фанеровки щитов ( см. фиг.

Силы нервюр крыла, передаваемые лонжерону, сконцентрированы.

Изготовление центральных нервюр

Центральная нервюра с армированием обеих сторон служит для поддержки фюзеляжа. Эти ребра жесткости крыла изготовляются по той же технологии, что и посадочные ребра жесткости. Отличие в их конструкции: они состоят их трех липовых листов. Центральный лист состоит из листа с поперечным расположением волокон и двух наружных фанер с продольным расположением.

Первым делом я вырезал фанерные заготовки из 0,8 мм липовой фанеры с волокнами в продольном расположении. При этом я не забыл про небольшой запас фанеры по контуру с последующей обработкой наждачной бумагой. Поскольку липа не поставляется в листах достаточного размера для размещения главной нервюры по длине с вертикально расположенными волокнами, то отдельные полоски липовой фанеры 0,8 мм нужно сращивать.

Здесь я соединил полоски друг с другом, чтобы увидеть, что они полностью перекрывают площадь нервюры.

После этого я подготовил смолу и куски стеклопластиковой ткани. Всё вместе смазал и сложил в виде слоеного пирога.

Между всех фанер поместил стеклопластиковую ткань, а затем все положил на вощеный лист.

Сверху пакета положил кусок фанеры и груз. Взял необходимое время для того, чтобы пакет затвердел и клей схватился.

После разбора каждое ребро жесткости было ошкурена в необходимые размеры.

Далее я прорезал пазы под лонжерон с помощью лобзика. Для того, чтобы все элементы конструкции крыла сообщались друг с другом каждое ребро жесткости пришлось просверлить.

Результатом данной процедуры стало изготовление полного пакета нервюр, необходимых для сборки крыла.

Геометрические характеристики крыла

Геометрические характеристики — перечень параметров, понятий и терминов используемых для проектирования крыла и определения наименований его элементов:

Размах крыла (L) — расстояние между двумя плоскостями, параллельными базовой плоскости самолёта и касающимися концов крыла.
Хорда несущей поверхности крыла — отрезок прямой взятый в одном из сечений крыла плоскостью, параллельной базовой плоскости самолёта, и ограниченный передней и задней точками профиля.
Местная хорда крыла (b(z)) — отрезок прямой на профиле крыла, соединяющий переднюю и заднюю точки контура профиля в заданном сечении по размаху крыла.
Длина местной хорды крыла (b(z)) — длина отрезка линии проходящей через заднюю и переднюю точки аэродинамического профиля в местном сечении по размаху крыла.
Центральная хорда крыла (b) — местная хорда крыла в базовой плоскости самолёта, получаемая продолжением линии передней и задней кромок крыла до пересечения с этой плоскостью.
Длина центральной хорды крыла (b) — длина отрезка между точками пересечения передней и задней кромок крыла базовой плоскостью самолёта.
Бортовая хорда крыла (bб) — хорда по линии разъёма крыла и фюзеляжа в сечении крыла, параллельном базовой плоскости самолёта.
Концевая хорда крыла (bк) — хорда в концевом сечении крыла, параллельном базовой плоскости самолёта.
Базовая плоскость крыла — плоскость содержащая центральную хорду крыла и перпендикулярная базовой плоскости самолёта.
Площадь крыла (S) — площадь проекции крыла на базовую плоскость крыла, включая подфюзеляжную часть крыла и наплывы крыла.
Контрольное сечение крыла — условное сечение крыла плоскостью, параллельной базовой плоскости крыла (z = const).
Кривизна крыла — переменное отклонение средней линии аэродинамических профилей от их хорд; характеризуется относительной вогнутостью профиля (отношением максимального отклонения средней линии от хорды к длине хорды).
Срединная поверхность крыла — образуемая совокупностью всех средних линий профилей крыла по размаху; обычно задаётся некоторыми законами изменения вогнутости профиля и крутки крыла по размаху; при постоянной величине крутки крыла и нулевой кривизне профилей из которых составлено крыло, срединная поверхность представляет собой плоскость.
Удлинение крыла (λ) — относительный геометрический параметр, определяемый как отношение: λ = L²/S;
Сужение крыла (η) — относительный геометрический параметр крыла, определяемый как отношение: η = b/bк;
Геометрическая крутка крыла — поворачивание хорд крыла по его размаху на некоторые углы (по закону φкр = f(z)), которые отсчитываются от плоскости, за которую обычно принимают базовую плоскость крыла (при условии если угол заклинения крыла по бортовой хорде равен нулю). Применяется для улучшения аэродинамических характеристик, устойчивости и управляемости на крейсерском режиме полёта и при выходе на большие углы атаки.
Местный угол геометрической крутки крыла (φкр(z)) — угол между местной хордой крыла и его базовой плоскостью, причём угол φкр(z) считается положительным, когда передняя точка местной хорды выше задней очки той же хорды крыла.

Проекты по теме:

Части крыла самолёта

Крыло можно разделить на три части: левую и правую полуплоскости или консоли и центроплан. Фюзеляж может быть сделан несущим (например, на самолётах Су-27, F-35, Су-57). Полуплоскости в свою очередь могут включать наплыв крыла и законцовку. Часто встречается выражение «крылья», но оно ошибочно по отношению к моноплану, так как крыло одно и состоит из двух полуплоскостей. В редких случаях и моноплан может иметь 2 крыла, например, Ту-144 имел дополнительное убирающееся переднее крыло.

C – образный или коробчатый лонжерон?

Для своего самолёта я выбрал деревянный C – образный профиль лонжерона с прочной передней кромкой и простым вертикальным лонжероном. Полностью крыло обшито бальзой для создания жесткости при кручении и для эстетики.

Дерево было выбрано взамен пластиковой трубки поскольку самолёт спроектирован с 2 градусным внутренним углом, а соединение в виде пластиковой трубки в центре крыла не сможет долго сопротивляться изгибающим нагрузкам. C – образный профиль лонжерона является также более благоприятным по сравнению с двутавровым профилем, поскольку в лонжероне должен быть сделан слот на всю его длину для установки в решетку. Эта добавленная сложность не за счет заметного увеличения прочности и соотношения веса лонжерона. Коробчатый лонжерон также был отвергнут, поскольку он сильно увеличивает вес, однако, его не так сложно построить, а по прочности он один из лучших. Простой вертикальный лонжерон, совмещенный с петлевым обтекателем, вот таким был выбор конструкции крыла, когда остальная часть крыла обшита и достаточно прочна без каких либо дополнительных опор.

  • Лонжерон. Лонжерон крыла спроектирован для восприятия изгибающей нагрузки от подъёмной силы крыла. Он не предназначен для восприятия скручивающей силы, созданной аэродинамическими силами крыла, а нагрузка ложится на обшивку крыла. Это распределение нагрузки подходит для легкой и очень эффективной нагрузки, поскольку каждая деталь занимает именно своё место.
  • Полки лонжеронов крыла выполнены из броска липы размерами ¼ x ½ x 24’’. Липа была выбрана в качестве материала, поскольку хорошо обрабатывается и имеет хорошую прочность для своего веса. Кроме того, подкупает простота приобретения брусков подходящего размера в специализированных магазинах, поскольку у меня не было под рукой деревообрабатывающего станка для распиловки досок.
  • Каркас крыла сделан из липового листа, толщиной 1/32”, который крепится к полкам лонжеронам сверху и снизу. Подобный каркас является необходимостью поскольку он кардинально улучшает жесткость и прочность крыльев даже при очень малом весе.
  • Задняя кромка крыла/задний лонжерон выполнен из бальзового листа толщиной 1/16”, что помогает добавить жесткость при кручении, а также унифицировать нервюры крыла и крепить плоскости управления к задней части нервюр.

Подтекст готической архитектуры

Обилие сияющего золота и взмывающие в небо шпили заявляли об устремлении личности к небу, и служили напоминанием о религиозной направленности строений. Все элементы архитектуры носили символичное, даже сакральное значение.

Непосредственно готический храм символизировал Вселенную. А такой декоративный элемент как готическая роза – колесо Фортуны, которое выражает круговорот времени.

Свет, проникающий сквозь витражи, несет божественное провидение. Лицезрея витражи, смертный отрывается от телесного, материального мира и оказывается в духовном.

Нервюра — это основное средство, с помощью которого выражалась основная мысль готической архитектуры об устремлении храма (Вселенной) ввысь.

Как сделать «Кремовый»?

Кремовый лимончелло обладает мягким нежным вкусом, лишенным ярко выраженной «кислинки», благодаря чему особенно нравится представительницам прекрасной половины человечества.

Для приготовления нам понадобятся:

  • пол-литра спирта;
  • 7 лимонов;
  • пол-литра молока;
  • пол-литра сливок;
  • килограмм сахарного песка;
  • щепотка ванилина.

Начало процесса ничем не отличается от озвученного выше. На всякий случай еще раз пройдем по всем пунктам:

  1. Снимаем цедру, заливаем спиртом, закрываем и отправляем в теплое место. Правда, продолжительность приготовления возрастает, в этом случае нам потребуется от 2 до 4 недель.
  2. Смешиваем в кастрюле сливки с молоком, добавляем в получившуюся смесь ванилин. Доводим на медленном огне до закипания. Убрав с плиты, засыпаем сахар, размешиваем и ждем остывания сиропа до 25 градусов.
  3. Процеживаем спиртовой настой, смешиваем с сиропом.
  4. Выдерживаем разлитый по бутылкам напиток в холодильнике 1-2 недели.
  5. Приступаем к дегустации!

Геометрические характеристики крыла

Геометрические характеристики — перечень параметров, понятий и терминов используемых для проектирования крыла и определения наименований его элементов:

Размах крыла (L) — расстояние между двумя плоскостями, параллельными базовой плоскости самолёта и касающимися концов крыла.
Хорда несущей поверхности крыла — отрезок прямой взятый в одном из сечений крыла плоскостью, параллельной базовой плоскости самолёта, и ограниченный передней и задней точками профиля.
Местная хорда крыла (b(z)) — отрезок прямой на профиле крыла, соединяющий переднюю и заднюю точки контура профиля в заданном сечении по размаху крыла.
Длина местной хорды крыла (b(z)) — длина отрезка линии проходящей через заднюю и переднюю точки аэродинамического профиля в местном сечении по размаху крыла.
Центральная хорда крыла (b) — местная хорда крыла в базовой плоскости самолёта, получаемая продолжением линии передней и задней кромок крыла до пересечения с этой плоскостью.
Длина центральной хорды крыла (b) — длина отрезка между точками пересечения передней и задней кромок крыла базовой плоскостью самолёта.
Бортовая хорда крыла (bб) — хорда по линии разъёма крыла и фюзеляжа в сечении крыла, параллельном базовой плоскости самолёта.
Концевая хорда крыла (bк) — хорда в концевом сечении крыла, параллельном базовой плоскости самолёта.
Базовая плоскость крыла — плоскость содержащая центральную хорду крыла и перпендикулярная базовой плоскости самолёта.
Площадь крыла (S) — площадь проекции крыла на базовую плоскость крыла, включая подфюзеляжную часть крыла и наплывы крыла.
Контрольное сечение крыла — условное сечение крыла плоскостью, параллельной базовой плоскости крыла (z = const).
Кривизна крыла — переменное отклонение средней линии аэродинамических профилей от их хорд; характеризуется относительной вогнутостью профиля (отношением максимального отклонения средней линии от хорды к длине хорды).
Срединная поверхность крыла — образуемая совокупностью всех средних линий профилей крыла по размаху; обычно задаётся некоторыми законами изменения вогнутости профиля и крутки крыла по размаху; при постоянной величине крутки крыла и нулевой кривизне профилей из которых составлено крыло, срединная поверхность представляет собой плоскость.
Удлинение крыла (λ) — относительный геометрический параметр, определяемый как отношение: λ = L²/S;
Сужение крыла (η) — относительный геометрический параметр крыла, определяемый как отношение: η = b/bк;
Геометрическая крутка крыла — поворачивание хорд крыла по его размаху на некоторые углы (по закону φкр = f(z)), которые отсчитываются от плоскости, за которую обычно принимают базовую плоскость крыла (при условии если угол заклинения крыла по бортовой хорде равен нулю). Применяется для улучшения аэродинамических характеристик, устойчивости и управляемости на крейсерском режиме полёта и при выходе на большие углы атаки.
Местный угол геометрической крутки крыла (φкр(z)) — угол между местной хордой крыла и его базовой плоскостью, причём угол φкр(z) считается положительным, когда передняя точка местной хорды выше задней очки той же хорды крыла.

Геометрические характеристики крыла

Реверс двигателя с воздушным винтом


Поворот лопастей воздушного винта.


Задействованное реверсивное устройство высокоплана Ан-74.

Реверс у винтовых самолётов реализуется путём поворота лопастей винта (изменяется угол атаки лопастей с положительного на отрицательный) при неизменном направлении вращения. Таким образом винт начинает создавать обратную тягу. Такой тип реверсивного устройства может применяться как на самолётах с поршневым двигателем, так и на турбовинтовых самолётах, в том числе и одномоторных. Реверс зачастую предусматривается на гидросамолётах и амфибиях, так как предоставляет значительное удобство при рулении на воде.

История

Первое применение реверса тяги на винтовых самолётах можно отнести к 1930-м годам. Так, реверсом были оборудованы пассажирские самолёты Боинг 247 и Дуглас DC-2.

Конструкция крыла самолета

Красиво нарисованный и детально рассчитанный профиль необходимо изготовить в реальности. Крыло, помимо выполнения своей основной функции – создания подъемной силы, должно выполнять еще ряд задач, связанных с размещением топливных баков, различных механизмов, трубопроводов, электрических жгутов, датчиков и много другого, что делает его крайне сложным техническим объектом. Но если говорить очень упрощенно, крыло самолета состоит из набора нервюр, которые обеспечивают формирование нужного профиля крыла, располагающихся поперек крыла, и лонжеронов, располагающихся вдоль. Сверху и снизу эта конструкция закрывается обшивкой из алюминиевых панелей со стрингерным набором. Нервюры по внешним обводам полностью соответствуют профилю крыла самолета. Трудоемкость изготовления крыла достигает 40 % от общей трудоемкости изготовления всего самолета.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации