Андрей Смирнов
Время чтения: ~21 мин.
Просмотров: 0

Что такое чип памяти и как программировать микросхемы

Терменвокс

Идея терменвокса была предложена в эпоху раннего «средневековья» радиоэлектроники — на рубеже 20-30-х годов XX века изобретателем и музыкантом Львом Терменом.

В основу действия этого электромузыкального инструмента заложен принцип сопоставления (вычитания) частот двух генераторов.

Один из генераторов является эталонным, второй — управляется приближением (удалением) ладони руки. Чем ближе ладонь, тем заметнее уход частоты второго генератора, тем выше звук на выходе устройства.

Рис. 6. Схема простого самодельного терменвокса.

Модель терменвокса, одного из самых первых электромузыкальных инструментов, может быть собрана по схеме на рис. 6. Это устройство является упрощенной модификацией схемы Э. Апрелева [М 6/92-28].

Сигналы двух генераторов вычитаются в специальном смесителе сигналов. Разностная частота поступает на звукоизлучатель или усилитель низкой частоты.

Исходная частота работы генераторов близка к 90 кГц. Антенной устройства является медный или алюминиевый прут диаметром 2…4 мм длиной 25…40 мм.

Разумеется, представленная на рис. 6 схема формирования звука заметно упрощена. В частности, для «реального» инструмента обязательно необходима регулировка громкости звучания инструмента. Для этого обычно используют аналогичный второй канал.

Изображенная на рис. 6 наиболее упрощенная модель терменвокса построена на основе двух генераторов, выполненных на микросхеме.

Начальная частота генерации обоих генераторов одинакова и устанавливается конденсатором СЗ и потенциометром R1. Выходные сигналы с генераторов через диоды VD1 и VD2 поступают на вход усилителя низкой частоты (транзистор VT1).

При приближении руки к антенне WA1 изменяется частота работы верхнего по схеме генератора, что вызывает появление звука изменяющейся тональности в телефонном капсюле.

Оригинальный металлоискатель, реагирующий на появление металлического (токопроводящего) предмета в поле антенны устройства также может быть собран по схеме на рис. 6.

В сочетании с обычным металлоискателем это позволит более уверенно распознавать различные предметы (магнитные, диамагнитные, токопроводящие и токонепроводящие), попадающие в поле действия поисковой катушки или электрода.

Электронный телеграфный ключ

Электронный телеграфный ключ на одной микросхеме K561J1E5 (рис. 14) выполнен по традиционной для таких ключей схеме [Рл KB и УКВ 1/96-23]. Релаксационный генератор собран на логических элементах с разными RC-цепями, ответственными за формирование посылок тире и точек.

Рис. 14. Схема электронного телеграфного ключа.

При нажатии на телеграфный ключ (замыкании зарядной цепи) заряжается группа конденсаторов С1 — СЗ (тире) или С2, СЗ (точка). Когда напряжение на входе логического элемента DD1.1 превысит определенный пороговый уровень, произойдет его переключение, и на выходе установится значение логического нуля.

Процесс заряда конденсаторов прервется, и они начнут разряжаться через сопротивления R2 и R3. При снижении напряжения на конденсаторах ниже определенного значения первый логический элемент вновь переключится, и процесс зарядки/разрядки конденсаторов повторится.

Этот процесс будет продолжаться до тех пор, пока замкнута контактная группа телеграфного манипулятора. Длительность точек и тире определяется постоянными времени зарядных и разрядных цепей (RC). Конденсаторы С1 — СЗ должны иметь малые токи утечки.

Для звуковой индикации генерируемых телеграфных сигналов предназначен генератор, выполненный на третьем и четвертом элементах микросхемы.

Генератор нагружен на пье-зокерамический излучатель типа ЗП-19. При использовании индуктивного излучателя (телефонного капсюля) последовательно с ним необходимо включить разделительный конденсатор емкостью более 0,1 мкФ.

Одновременно со звуковой, в схему введена световая индикация на светодиоде НИ (АЛ307), что позволяет визуально контролировать наличие телеграфных посылок. Для коммутации цепей передающего устройства использован буферный каскад на транзисторе VT1 (КТ315), нагруженный на реле.

Как и для других простейших телеграфных ключей, использующих подобный способ формирования точек и тире, данной конструкции присущи те же недостатки: необходимость подстройки соотношения продолжительности точек/тире сопротивлением R1 при изменении скорости передачи.

Механическая часть манипулятора может быть изготовлена из отрезка ножовочного полотна с примыкающими к нему контактными группами. В качестве таких контактов можно воспользоваться контактами разобранного крупногабаритного реле.

Что такое интегральная микросхема

Интегральная микросхема — это миниатюрный электронный блок, содержащий в общем корпусе транзисторы, диоды, резисторы и другие активные и пассивные-элементы, число которых может достигать нескольких десятков тысяч.

Одна микросхема Может заменить целый блок радиоприемника, электронной вычислительной машины (ЭВМ) и электронного автомата. «Механизм» наручных электронных часов, например, — это всего лишь одна большей микросхема.

По своему функциональному назначению интегральные микросхемы делятся на две основные группы: аналоговые, или линейно-импульсные, и логические, или цифровые, микросхемы.

Аналоговые микросхемы предназначаются для усиления, генерирования и преобразования электрических колебаний разных частот, например, для приемников, усилителей, а логические — для использования в устройствах автоматики, в приборах с цифровым отсчетом времени, в ЭВМ.

Этот практикум посвящается знакомству с устройством, принципом работы и возможным применением самых простых аналоговых и логических интегральных микросхем.

Как усилить выходной сигнал?

Выход TL494CN является довольно слаботочным, а вы, конечно же, хотите большей мощности. Таким образом, мы должны добавить несколько мощных транзисторов. Наиболее просто использовать (и очень легко получить — из старой материнской платы компьютера) n-канальные силовые МОП-транзисторы. Мы должны при этом проинвертировать выход TL494CN, т. к. если мы подключим n-канальный МОП-транзистор к нему, то при отсутствии импульса на выходе микросхемы он будет открытым для протекания постоянного тока. При этом МОП-транзистор может попросту сгореть… Так что достаем универсальный npn-транзистор и подключаем согласно нижеприведенной схеме.

Мощный МОП-транзистор в этой схеме управляется в пассивном режиме. Это не очень хорошо, но для целей тестирования и малой мощности вполне подходит. R1 в схеме является нагрузкой npn-транзистора. Выберите его в соответствии с максимально допустимым током его коллектора. R2 представляет собой нагрузку нашего силового каскада. В следующих экспериментах он будет заменен трансформатором.

Если мы теперь посмотрим осциллографом сигнал на выводе 6 микросхемы, то увидите «пилу». На № 8 (К1) можно по-прежнему видеть прямоугольные импульсы, а на стоке МОП-транзистора такие же по форме импульсы, но большей величины.

Схема работает следующим образом:

Лекарства с аналогичным действием

В аптеках можно найти множество препаратов с действием, аналогичным Про-Визио. Аналогами препарата считаются:

  • — содержит в составе минеральные вещества, витамины и каротиноиды.
  • Офтальмикс — это глазные капли, в состав которых входят аминокислоты, витамины и экстракт черники.
  • Визиокс лютеин — витаминный комплекс, в состав которого входят те же вещества, что содержатся в таблетках Про-Визио Форте. Аналог выпускается в виде капсул, дополнительно в его состав входят цинк и аскорбиновая кислота.
  • СуперОптик — , в его состав входят витамины C, E, витамины группы B, различные микроэлементы, лютеин, лецитин и омега-3.
  • — витаминно-минеральный комплекс, который не относится к разряду биодобавок, поэтому является полноценным лекарственным средством.

При возникновении проблем со зрением пациенты в первую очередь должны обращаться к врачу, а потом уже использовать в качестве дополнительного лечения различные препараты, в том числе и Pro-Visio. Отзывы пациентов свидетельствуют об эффективности препарата при правильном употреблении, при грамотном подходе к лечению большинство пациентов улучшили свое здоровье с помощью этой биодобавки.

Моя работа требует постоянного нахождения за компьютером, поэтому к вечеру глаза очень устают. Зрение я проверяю ежегодно, врач посоветовал пропить витамины с черникой. В числе рекомендованных препаратов был Про-Визио. Пью его только месяц, параллельно закапываю в глаза . Стал чувствовать себя намного лучше.

Маме после операции на глазу назначили кучу препаратов, среди них увидела таблетки Pro-Visio. Почитала инструкцию, решила купить себе. Я много времени провожу за компьютером, к тому же, наверное, в моем возрасте уже нужно начинать профилактику. Уверена, что мне этот препарат точно не помешает!

Мой сын стал жаловаться на усталость глаз в конце дня, сходили к окулисту. Врач сказал, что нужно меньше времени сидеть за компьютером, для профилактики выписал Pro-Visio. Почитала — хороший натуральный состав, таблетки можно пить детям с трехлетнего возраста. Пьем таблетки, ограничили компьютер, увеличили количество прогулок и прочитанных книг. Пока жалоб нет.

Схема сенсорного выключателя

На рис. 3 показана схема сенсорного выключателя конструкции И.А. Нечаева [Р 4/89-62]. Прикосновение к площадкам Е1 и Е2 позволяет включать или выключать ток в нагрузке (светодиоды HL1 и HL2).

Рис. 3. Схема сенсорного выключателя.

Работает сенсорный выключатель следующим образом: в момент включения питания конденсаторы С1 и С2 разряжены, на входах соответствующих логических элементов устанавливаются логический нуль (выводы 1, 2 микросхемы DD1) и логическая единица (выводы 3, 5, 6 микросхемы DD1).

Соответственно, на выходе второго логического элемента установится логический нуль, а на выходе третьего — логическая единица, четвертого — снова нуль. Следовательно, один из элементов нагрузки — светодиод — будет включен, другой — выключен.

Резистор R3 создает цепь положительной обратной связи, обеспечивающей устойчивое состояние сенсорного выключателя. Для того чтобы переключить нагрузку, достаточно коснуться пальцем до сенсорных площадок Е1 и Е2.

С конденсатора С2 уровень логической единицы окажется поданным через сопротивление пальца и резистор R1 на вход первого логического элемента.

Поскольку на входе первого элемента устанавливается значение логической единицы, все остальные логические элементы одновременно изменят свое состояние. Выходные каскады переключатся.

На конденсаторе С1 установится значение логической единицы, на конденсаторе С2 — логического нуля. Для повторного переключения элементов схемы необходимо снова прикоснуться к сенсорным площадкам.

Это прикосновение приведет к очередной перезарядке конденсаторов С1 и С2 и переключению схемы в другое устойчивое состояние.

Сенсорный выключатель устойчиво работает в диапазоне питающих напряжений от 6 до 12 6. Взамен светодиодных индикаторов или параллельно им может быть включена и иная нагрузка, например, обмотка реле, управляющего работой бытовой техники, генератор звуковых или световых сигналов и т.п.

Правовая защита

Законодательство России предоставляет правовую охрану топологиям интегральных микросхем. Топологией интегральной микросхемы является зафиксированное на материальном носителе пространственно-геометрическое расположение совокупности элементов интегральной микросхемы и связей между ними (ст. 1448 ГК РФ).

Автору топологии интегральной микросхемы принадлежат следующие интеллектуальные права:

  1. исключительное право;
  2. право авторства.

Автору топологии интегральной микросхемы принадлежат также другие права, в том числе право на вознаграждение за использование служебной топологии.

Исключительное право на топологию действует в течение десяти лет. Правообладатель в течение этого срока может по своему желанию зарегистрировать топологию в Федеральной службе по интеллектуальной собственности, патентам и товарным знакам.

Как соединяются радиоэлементы в схеме

Итак, вроде бы определились с задачей этой схемы. Прямые линии – это провода, либо печатные проводники, по которым будет бежать электрический ток. Их задача – соединять радиоэлементы.

Точка, где  соединяются три и более проводников, называется узлом. Можно сказать, в этом месте проводки спаиваются:

Если пристально вглядеться в схему, то можно заметить пересечение двух проводников

Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте провода не соединяются и они должны быть изолированы друг от друга. В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:

Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.

Если бы между ними было соединение, то мы бы увидели вот такую картину:

Светофон

Светофон (рис. 5) представляет собой электронную игрушку — звуковой генератор [Р 1/90-60]. Частота генерации определяется уровнем освещенности чувствительного к свету (hv) элемента R1 (фотосопротивления, фотодиода) при приближении к нему руки. Для того чтобы звучание происходило по желанию «музыканта», включение звука происходит при отпускании пальца от сенсорных площадок Е1 и Е2.

Рис. 5. Схема светофона.

При использовании фоточувствительных приборов различного типа вероятно потребуется подбор емкости конденсатора С1, а также включение параллельно (или последовательно) фоточувствительному элементу (фотосопротивлению, фотодиоду) резисторов, задающих диапазон изменения генерируемой звуковой частоты.

Отметим попутно, что при самостоятельной доработке устройства в качестве управляющего элемента (рис. 5) можно использовать термосопротивление, имеющее малую тепловую инерцию, например, бусинкового типа.

Устройство, полученное при этом, можно наименовать термофоном или эолофоном (от греческого aiolos — ветер и phone — голос, звук) — оно будет изменять частоту звука при обдувании терморезистора.

Электромузыкальный прибор, управляемый наэлектризованным предметом (электронофон), можно получить, включив полевой транзистор вместо резистора R1.

Логический элемент в линейном режиме

Использование логических элементов цифровых микросхем для работы с аналоговыми сигналами возможно лишь в случае, если их режим выведен в линейный или близкий к нему. Так в линейном режиме ТТЛ элемент эквивалентен усилителю к коэффициентом усиления 10 … 15 (примерно 20 дБ), а элемент КМОП – усилителю с коэффициентом усиления 10 … 20 (20 … 26 дБ).



Вывод логического элемента в линейный режим: слева-направо током, напряжением, обратной связью.

Для вывода логического элемента на линейный участок применяют различные способы. Один из них основан на включении на входе элемента ТТЛ резистора R. Этот резистор вызовет ток, который будет протекать через эмиттерный переход входного транзистора элемента ТТЛ. Изменяя сопротивление внешнего резистора, можно изменять напряжение на выходе элемента, то есть изменять положение его рабочей точки на передаточной характеристике. Для элементов ТТЛ сопротивление такого внешнего резистора составляет от 1 кОм до 3 кОм. Однако такой способ не применим для КМОП микросхем, так как они работают без выходных токов (есть токи утечки, но они малы и нестабильны).

Второй способ вывода логического элемента на рабочий режим может быть подача на вход соответствующего напряжения, например с помощью резистивного делителя. Так, для элементов ТТЛ середина линейного участка передаточной характеристики соответствует входное напряжение 1,5…1,8 В, а для КМОП 3…6 В (при напряжении питания 9 В). Для разных логических элементов это напряжение не одинаково, поэтому его подбирают опытным путём. Номиналы входных резисторов выбирают таким образом, что бы входные токи элементов не влияли на напряжение, снимаемое с резистивного делителя.

Третий способ, является наиболее эффективным, для этого создают отрицательную обратную связь (ООС) по постоянному току между входом и выходом элемента, благодаря чему рабочая точка автоматически поддерживается на требуемом участке передаточной характеристики и не требуется тщательного подбора внешних резисторов. Этот способ реализуется для логических элементов с инверсией входного сигнала: НЕ, И-НЕ, ИЛИ-НЕ.

Сопротивление резистора в цепи ООС выбирают исходя из обеспечения элементу необходимого входного тока. Для элементов КМОП оно составляет от нескольких килоом до десятков мегаом, а для ТТЛ – от десятков Ом до 1 кОм. Но применение ООС снижает коэффициент усиления элемента.

Схемки на AN6884

Рейтинг:  5 / 5

Подробности
Категория: Схемы начинающим
Опубликовано: 28.06.2018 11:18
Просмотров: 2628

простые схемы Микросхема AN6884 предназначена для работы в светодиодных индикаторах уровня сигнала, в аудиоаппаратуре. Внутри её (рисунок 1) есть четыре компаратора К1-К4, на выходах которые ключи, один усилитель А1, детектор на диоде VD2, стабилизатор на стабилитроне VD1 и набор резисторов. К выходам ключей компараторов подключаются светодиоды. Питание (плюс) подается на девятый вывод, а минус — на пятый. Посмотрим, что получается.

Резистор R1 вместе со стабилитроном VD1 образует стабилизатор некоторого образцового напряжения. Это напряжение поступает на один из входов компаратора К5 напрямую, а на входы других компараторов — через делитель напряжения из резисторов R2-R6. Если теперь постепенно, начав с нуля, увеличивать напряжение, которое поступает на соединенные вместе вторые входы компараторов, то ключи на выходах компараторов будут открываться в момент превышения этого напряжения, над напряжением, поступающим на их первые входы (от делителя на R2-R6). Таким образом, число открытых ключей будет зависеть от напряжения, поступающего на соединенные вместе входы компараторов. А к выходам этих ключей подключены светодиоды. Поэтому, чем больше напряжение, тем большее число светодиодов будет гореть, и наоборот. Для усиления входного напряжения служит усилитель А1. А детектор VD2 позволяет измерять еще и переменные напряжения, и устанавливать быстроту реакции индикатора. Микросхема выполнена в корпусе, у которого выводы только с одной стороны. На краю корпуса возле первого вывода сделан скос, который означает, что отсчитывать выводы надо именно с этого края. Чувствительность микросхемы около 0,15V, это значит, что при таком напряжении на входе (на выводе 8), будут гореть светодиоды, подключенные к выводам 1, 2 и 3. При напряжении около 0,25V горят все светодиоды, а при напряжении 0,07V горит только один, подключенный к первому выводу. На рисунке 2 показана схема индикатора уровня 3Ч сигнала на этой микросхеме. Его вход можно, например, подключить к выходу УНЧ магнитофона (параллельно динамику), чтобы по числу горящих светодиодов можно было оценить уровень сигнала. Если светодиоды расположить последовательно и в линейку, то получится такой светящийся столбик по высоте которого можно судить о громкости или уровне сигнала. Подстройкой сопротивления R2 нужно установить чувствительность индикатора так, чтобы при средней громкости горели светодиоды HL1, HL2, HL3, при большой — HL1, HL2, HL3, HL4. А при такой громкости, когда начинаются искажения горели все светодиоды. Последний из них, — HL5 может быть красным, предпоследний — HL4 — желтым, а все остальные зелеными. Теперь установив громкость магнитофона или усилителя так, чтобы горели только зеленые светодиоды и изредка желтый, мы получим оптимальное качество звука. А если аппарат стереофонический, можно сделать два таких индикатора, подключить каждый к своему усилителю. Расположить их рядом и глядя на них оценивать баланс стереоканалов. Деталей в схеме индикатора мало. Все они смонтированы на печатной плате, показанной на рисунке 3. При монтаже нужно помнить, что первый вывод микросхемы AN6884 отмечен скосом на корпусе. Вместо микросхемы AN6884 можно использовать аналогичные LB1403, LB1413, LB1423. Они точно такие же, но скос возле первого вывода сделан не по ребру корпуса, а по его уголку. Впрочем, какая разница, — скос возле первого вывода, и ладно. Светодиоды подойдут любые обычные, например, АЛ307, АЛ102 или какие-то импортные, но только не инфракрасные. Полярность светодиодов можно определить при помощи мультиметра (проверить как диоды) или батарейкой с резистором (рис. 4). При проверке батарейкой резистор обязателен, иначе может сгореть светодиод. Источник питания схемы может быть напряжением от 4,5 до 16V, например, источник питания магнитофона, батарейка, или лабораторный источник. Используя микросхему AN6884 (или аналогичную) можно сделать индикатор акустического шума или громкости звука, который будет оценивать уровень звука в помещении или возле какого-то объекта Схема такого индикатора показана на рисунке 5.

Оставлять комментарии могут только зарегистрированные пользователи

Рассмотрим это подробнее, на примере планшета

  1. Контроллер питания, с его назначением всё понятно, питать всё это чудо. 
  2. Процессор. Связывает всё воедино, выполняет все системные функции, управляется интерфейсом  ПО, пользователь же управляет операционной системой, ОС уже процессором. В компьютерах и ноутбуках связующую роль между «железом» и ПО выполняет микросхема BIOS (базовая система ввода-вывода данных. (Мой ник не с проста выбирался! =)) 
  3. Микросхема постоянной памяти, ПЗУ   разделенная на две части системно, в одной части находится служебная информация, и операционная система. А в другой её части находиться память доступна непосредственно пользователю.
  4. Микросхемы RAM, всё понятно, оперативная память, «хватает» файлы на «лету», требования от этой памяти — высокая скорость обмена данными и максимально быстрая их перезапись. Вот и по этому «оперативная» — должна работать оперативненько))).

Как видим, ничего нет на самом деле сложного, сложное только их изготовление, хотя последнее время на рынке памяти очень большая конкуренция. Несомненным гигантом в её производстве является три корпорации, южнокорейская корпорация SAMSUNG и Hynix(Hyundai Electronics), и Американская Kingston. Но так же их выпускают и другие корпорации, к примеру Intel, MEDIATEK, Quanta и многие другие, даже встречаются иногда «но нэйм» микросхемы, и кто их сделал — останется загадкой. 

Предельные параметры

Как и у любой другой микросхемы, у TL494CN описание в обязательном порядке должно содержать перечень предельно допустимых эксплуатационных характеристик. Дадим их на основании данных Motorola, Inc:

  1. Напряжение питания: 42 В.
  2. Напряжение на коллекторе выходного транзистора: 42 В.
  3. Ток коллектора выходного транзистора: 500 мА.
  4. Диапазон входного напряжения усилителя: от — 0,3 В до +42 В.
  5. Рассеиваемая мощность (при t< 45 °C): 1000 мВт.
  6. Диапазон температур хранения: от -55 до +125 °С.
  7. Диапазон рабочих температур окружающей среды: от 0 до +70 °С.

Следует отметить, что параметр 7 для микросхемы TL494IN несколько шире: от –25 до +85 °С.

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организацииМуниципалитетыРайоныОбразованияПрограммыОтчетыпо упоминаниямДокументная базаЦенные бумагиПоложенияФинансовые документыПостановленияРубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датамРегламентыТерминыНаучная терминологияФинансоваяЭкономическаяВремяДаты2015 год2016 годДокументы в финансовой сферев инвестиционной

Что под капотом чипа DRAM, этапы развития технологии

“Всем знаком закон Мура, описывающий уменьшение размеров транзисторов в логических схемах. Для того, чтобы он продолжал работать, технологам приходится идти на все новые и новые ухищрения, однако их работу несколько усложняет то, что все чипы очень разные по структуре. А что было бы, если бы можно было оптимизировать технологию под конкретный дизайн микросхемы? Ответ на этот вопрос может дать динамическая память.”
Классический пример работы закона Мура — ячейка статической памяти. Ее схема давно известна и широко используется, занимая десятки процентов площади современных микропроцессоров и систем на кристалле. Именно площадь ячейки статической памяти стали использовать как мерило плотности упаковки новых технологий, когда стало понятно, что длина канала транзистора больше не может быть эталоном проектных норм

Учитывая важность статической памяти, технологи стараются подбирать параметры процессов так, чтобы не только в принципе увеличивать плотность упаковки элементов на кристалле, но и заботиться конкретно о статической памяти. Однако, на чипе всегда есть множество других схем, и если очень сильно упираться в оптимизацию именно памяти, это может выйти боком

Но что было бы, если бы технологию можно было полностью подчинить нуждам схемотехники? Ответ на этот вопрос может дать динамическая память.

Первые шаги по работе с микросхемой

Прежде чем делать какое-либо полезное устройство, рекомендуется изучить, как работает TL494CN. Как проверить ее работоспособность?

Возьмите свою макетную плату, установите на нее микросхему и подключите провода согласно нижеприведенной схеме.

Если все подключено правильно, то схема будет работать. Оставьте выводы 3 и 4 не свободными. Используйте свой осциллограф, чтобы проверить работу ГПН – на выводе 6 вы должны увидеть пилообразное напряжение. Выходы будут нулевыми. Как же определить их работоспособность в TL494CN. Проверка ее может быть выполнена следующим образом:

  1. Подключите выход обратной связи ( № 3) и выход управления «мертвым временем» (№ 4) к общему выводу (№ 7).
  2. Теперь вы должны обнаружить прямоугольные импульсы на выходах микросхемы.

Устройство для рефлексотерапии

Схема прибора — электронного устройства для рефлексотерапии, разработанного И. Скулкиным — показана на рис. 13 [Рл 2/97-26]. Узел поиска биологически активных точек (БАТ) содержит усилитель на составном транзисторе VT1 — VT3 и генератор импульсов на микросхеме DD1.

Рис. 13. Схема прибора для рефлексотерапии.

Поисковый (активный) электрод (А) представляет собой закругленную иглу диаметром 1 мм. Пассивный электрод (П) состоит из отрезка телескопической антенны.

При поиске БАТ на теле человека этот электрод зажимают в руке. Когда поисковый электрод попадает на БАТ, сопротивление участка кожи резко уменьшается, а устройство реагирует на это включением светодиода.

Полярность напряжения, прикладываемого к биологически активной точке, можно изменять переключателем SA1, а переключатель SA2 переводит устройство из режима поиска БАТ в режим воздействия на них. Частоту и ток воздействия задают потенциометры R2 и R4, соответственно.

Для проверки готовности прибора к работе следует в режиме «Поиск» (SA2) установить максимальный ток воздействия и замкнуть электроды. При этом должен загореться светодиод HL1.

Функции выводов входных сигналов

Как и любое другое электронное устройство. рассматриваемая микросхема имеет свои входы и выходы. Мы начнем с первых. Выше уже было дан перечень этих выводов TL494CN. Описание на русском языке их функционального назначения будет далее приведено с подробными пояснениями.

Вывод 1

Это положительный (неинвертирующий) вход усилителя сигнала ошибки 1. Если напряжение на нем ниже, чем напряжение на выводе 2, выход усилителя ошибки 1 будет иметь низкий уровень. Если же оно будет выше, чем на контакте 2, сигнал усилителя ошибки 1 станет высоким. Выход усилителя по существу, повторяет положительный вход с использованием вывода 2 в качестве эталона. Функции усилителей ошибки будут более подробно описаны ниже.

Вывод 2

Это отрицательное (инвертирующий) вход усилителя сигнала ошибки 1. Если этот вывод выше, чем на выводе 1, выход усилителя ошибки 1 будет низким. Если же напряжение на этом выводе ниже, чем напряжение на выводе 1, выход усилителя будет высоким.

Вывод 15

Он работает точно так же, как и № 2. Зачастую второй усилитель ошибки не используется в TL494CN. Схема включения ее в этом случае содержит вывод 15 просто подключенный к 14-му (опорное напряжение +5 В).

Вывод 16

Он работает так же, как и № 1. Его обычно присоединяют к общему № 7, когда второй усилитель ошибки не используется. С выводом 15, подключенным к +5 В и № 16, подключенным к общему, выход второго усилителя низкий и поэтому не имеет никакого влияния на работу микросхемы.

Вывод 3

Этот контакт и каждый внутренний усилитель TL494CN связаны между собой через диоды. Если сигнал на выходе какого-либо из них меняется с низкого на высокий уровень, то на № 3 он также переходит в высокий

Когда сигнал на этом выводе превышает 3,3 В, выходные импульсы выключаются (нулевая скважность). Когда напряжение на нем близко к 0 В, длительность импульса максимальна

В промежутке между 0 и 3,3 В, длительность импульса составляет от 50% до 0% (для каждого из выходов ШИМ-контроллера — на выводах 9 и 10 в большинстве устройств).

Если необходимо, контакт 3 может быть использован в качестве входного сигнала или может быть использован для обеспечения демпфирования скорости изменения ширины импульсов. Если напряжение на нем высокое (> ~ 3,5 В), нет никакого способа для запуска ИБП на ШИМ-контроллере (импульсы от него будут отсутствовать).

Вывод 4

Он управляет диапазоном скважности выходных импульсов (англ. Dead-Time Control)

Если напряжение на нем близко к 0 В, микросхема будет в состоянии выдавать как минимально возможную, так и максимальную ширину импульса (что задается другими входными сигналами). Если на этот вывод подается напряжение около 1,5 В, ширина выходного импульса будет ограничена до 50% от его максимальной ширины (или ~ 25% рабочего цикла для двухтактного режима ШИМ-контроллера). Если напряжение на нем высокое (> ~ 3,5 В), нет никакого способа для запуска ИБП на TL494CN. Схема включения ее зачастую содержит № 4, подключенный напрямую к земле.

Важно запомнить! Сигнал на выводах 3 и 4 должен быть ниже ~ 3,3 В. А что будет, если он близок, например, к + 5 В? Как тогда поведет себя TL494CN? Схема преобразователя напряжения на ней не будет вырабатывать импульсы, т.е

не будет выходного напряжения от ИБП.

Вывод 5

Служит для присоединения времязадающего конденсатора Ct, причем второй его контакт присоединяется к земле. Значения емкости обычно от 0,01 μF до 0,1 μF. Изменения величины этого компонента ведут к изменению частоты ГПН и выходных импульсов ШИМ-контроллера. Как правило здесь используются конденсаторы высокого качества с очень низким температурным коэффициентом (с очень небольшим изменением емкости с изменением температуры).

Вывод 6

Для подключения врямязадающего резистора Rt, причем второй его контакт присоединяется к земле. Величины Rt и Ct определяют частоту ГПН.

f = 1,1 : (Rt х Ct).

Вывод 7

Он присоединяется к общему проводу схемы устройства на ШИМ-контроллере.

Вывод 12

Он замаркирован литерами VCC. К нему присоединяется «плюс» источника питания TL494CN. Схема включения ее обычно содержит № 12, соединенный с коммутатором источника питания. Многие ИБП используют этот вывод, чтобы включать питание (и сам ИБП) и выключать его. Если на нем имеется +12 В и № 7 заземлен, ГПН и ИОН микросхемы будут работать.

Вывод 13

Это вход режима работы. Его функционирование было описано выше.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации