Андрей Смирнов
Время чтения: ~16 мин.
Просмотров: 0

Лейденская банка — leyden jar

Конструкция электрофорной машины

2 соосных диска вращаются друг против друга, неся при этом простейшие конденсаторы из алюминиевых секторов. Благодаря случайным процессам в первичный момент на участке одного из сегмента образуется заряд. Вызывается явление процессом трения о воздух. Из-за симметричности конструкции нельзя заранее предсказать итоговый знак.

В конструкции используются 2 лейденовские банки. Они создают из последовательно включенных конденсаторов единую систему. Это влияет на двойное уменьшение требований к рабочему напряжению в каждой емкости. Следует подбирать одинаковые номиналы, это залог равномерного распределения рабочего напряжения.

Снять напряжение призваны индукционные нейтрализаторы. Вся конструкция напоминает металлический гребень, парящий на некотором расстоянии над диском. В точку съема заряда приходят оба диска с эквивалентными знаками внешней поверхности. Нейтрализаторы спарены. После осуществления разгрузки сильно снижается заряд сегментов. В дополнительных конструкциях щетка легко соприкасается с краем диска.

Оператор за счет силы электрического привода либо собственной рукой насильно сближает отталкивающиеся элементы системы. Взаимодействующие друг с другом заряды стараются расположиться как можно дальше. Процесс способствует резкому росту поверхностной плотности зарядов во всех точках съема.

Электричество собирается в лейденовских банках с гребней нейтрализаторов. Происходит быстрый рост напряжения. Избежать выхода из строя системы помогает разрядник, прикрепленный к 2 электродам. Возможно получение дуги различно силы при регулировании дистанции между ними. Существует взаимосвязь: чем сильнее напряженность поля между 2 разрядниками, тем более шумный эффект сопровождает процесс опустошения банок Лейдена.

Сегменты остаются опустошенными после точки съема заряда. По течению движения устанавливаются уравнители потенциала или нейтрализаторы по принципу действия. Каждая противоположная сторона диска уже отдала заряд у различных щеток. В момент прохождения точки съема и после нее остаточные знаки заряда являются различными.

Отрезок толстой проволоки из меди с щетками из тончайших проволочек, парящих на небольшой высоте или трущих сегменты, способствует замыканию указанных противоположностей. Результат — заряды на обоих сегментах приравниваются к нулю, вся энергия превращается согласно закону Джоуля-Ленца в тепло, образующееся на утолщенной медной жиле.

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организацииМуниципалитетыРайоныОбразованияПрограммыОтчетыпо упоминаниямДокументная базаЦенные бумагиПоложенияФинансовые документыПостановленияРубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датамРегламентыТерминыНаучная терминологияФинансоваяЭкономическаяВремяДаты2015 год2016 годДокументы в финансовой сферев инвестиционной

Изобретение лейденской банки — новая страница в летописи электричества

После того, как было установлено разделение тел на проводники и непроводники, а опыты с электростатическими машинами получили широчайшее распространение, совершенно естественной была попытка «накопить» электрические заряды в каком-то стеклянном сосуде, который мог их сохранить. Среди многих физиков, занявшихся подобными экспериментами, наибольшую известность получил голландский профессор из г. Лейдена Мусхенбрук (Мушенбрек) (1692—1761 гг.).

Зная, что стекло не проводит электричества, он (в 1745 г.) взял стеклянную банку (колбу), наполненную водой, опустил в нее медную проволоку, висевшую на кондукторе электрической машины, и, взяв банку в правую руку, попросил своего помощника вращать шар машины. При этом он правильно предположил, что заряды, поступавшие с кондуктора, будут накапливаться в стеклянной банке.

После того, как по его мнению, в банке накопилось достаточное количество зарядов, он решил левой рукой отсоединить медную проволоку. При этом он ощутил сильный удар, ему показалось, что «пришел конец». В письме Реомюру в Париж (в 1746 г.) он писал, что этот «новый и страшный опыт советую самим никак не повторять» и что «даже ради короны Франции он не согласится подвергнуться столь ужасному сотрясению».

Так была изобретена лейденская банка (по имени г. Лейдена), а вскоре и первый простейший конденсатор, одно из распространеннейших электротехнических устройств.

Опыт Мусхенбрука произвел подлинную сенсацию не только среди физиков, но и многих любителей, интересовавшихся электрическими опытами.

Независимо от Мусхенбрука в том же 1745 г. к созданию лейденской банки пришел и немецкий ученый Э.Г. Клейст. Опыты с лейденской банкой стали производить физики разных стран, а в 1746—1747 гг. первые теории лейденской банки разработали знаменитый американский ученый Б. Франклин и хранитель физического кабинета англичанин В. Уатсон. Небезынтересна отметить, что Уатсон стремился определить скорость распространения электричества, «заставив» его «пробежать» 12 000 футов.

Одним из важнейших последствий изобретения лейденской банки явилось установление влияния электрических разрядов на организм человека, что привело к зарождению электромедицины это было первое сравнительно широкое практическое применена электричества, сыгравшее большую роль в углублении изучении электрических явлений.

Опыт Мусхенбрука был повторен в присутствии французского короля аббатом Нолле. Он образовал цепь из 180 гвардейцев взявшихся за руки, причем первый держал банку в руке, а последний прикасался к проволоке, извлекая искру. «Удар почувствовался всеми в один момент; было курьезно видеть разнообразие жестов и слышать мгновенный вскрик десятков людей». От этой цепи солдат и произошел термин «электрическая цепь».

Постепенно конструкция лейденской банки совершенствовалась: воду заменили дробью, а затем наружная поверхность покрывалась тонкими свинцовыми пластинами; позднее внутреннюю и наружную поверхности стали покрывать оловянной фольгой, и банка приобрела современный вид.

При проведении исследований с банкой было установлено (в 1746 г. англичанином Б. Вильсоном), что количество электричества, собираемое в банке, пропорционально размеру обкладок и обратно пропорционально толщине изоляционного стоя. В 70-х гг. XVIII в. металлические пластины стали разделять не стеклом, а воздушным промежутком — так, появился простейший конденсатор.

Веселовский О. Н. Шнейберг А. Я «Очерки по истории электротехники»

Видео инструкция

В этом видео показано, как можно для вязаных изделий можно пользоваться техникой в стиле интарсия. 

Лейденская банка

Заряд статического электричества возникает при появлении в объекте избытка или дефицита электронов, а искры проскакивают при обмене электронами, которые стремятся к равновесию. (Ток — это постоянное движение электронов.) Но в XVIII веке люди находили достаточным объяснение, что электростатика вызывается «флюидами», которые просто заполняют объем тела.

Электростатические генераторы, такие как серный шар Отто фон Герике в 1660-е годы и стеклянная сфера Фрэнсиса Хоксби в 1700-е, были просто «фрикционными машинами», где за счет трения флюиды вырывались из одного тела и переходили в другое. Чтобы получить из такой машины одну безобидную искорку, требовались значительные физические усилия, так что интерес к ним был лишь как к новинкам.

В 1740-х годах на вечеринках был популярен трюк «электрический поцелуй». Целующаяся парочка при соприкосновении буквально давала искру, поскольку один из партнеров был электрически заряжен. Если хотели дать более мощную искру, то заряжались сильнее. Но что могло собрать больше электрических флюидов, чем банка?

Фон Клейст использует свои руки как проводники, чтобы зарядить прототип лейденской банки. Разумеется, его слегка бьет током. Дальнейшее развитие лейденской банки показало, что она так же прекрасно работает и без воды

Опасные опыты

В 1745 году немецкий ученый Эвальд Юрген фон Клейст покрыл внутреннюю часть стеклянной банки серебряной фольгой и налил воды. Он проверял идею заряжать воду через контакт электростатического генератора.

Идея оказалась неудачной, но не без пользы для науки. Когда ученый прикоснулся к фольге рукой, он получил сильнейший и, без сомнения, опасный электрический удар.

Но Клейст выжил и сообразил, что его банка определенно способна сохранять электричество. Но что с ним делать?

Похожий прибор в том же 1745 году построили голландский изобретатель Питер ван Мушенбрук и его ученик Кюнеус в Лейдене. (Кстати, у Мушенбрука и Клейста был общий наставник.) Мушенбрук продемонстрировал свою банку ученым в Лейденском университете, и прибор был назван лейденской банкой.

В дальнейшем эта банка претерпела ряд усовершенствований: фольгой выстилалась не только внутренняя поверхность, но и наружная, причем горловина банки оставалась не закрытой фольгой.

В опытах с электричеством внешняя фольга непосредственно касалась рук экспериментатора, который сам был «электрической емкостью» этого первого конденсатора.

Лейденская банка действительно была первым электрическим конденсатором — устройством, которое состоит из двух проводящих пластин и собирает электроны.

Как только одна пластина (внутренняя фольга) получает электрический заряд, другая (внутренняя пластина или рука) приобретает тот же по величине и противоположный по знаку заряд. Если эти две пластины соединить, разница в зарядах исчезнет.

Если обратиться к самому Бенджамину Франклину, то этот американский государственный деятель сумел доказать, что молния состоит из тех же самых «флюидов электричества», только они накапливаются в тучах.

Он собирал электрический заряд с помощью воздушного змея на проводящей нити, и в конце концов искра проскочила между нитью и кольцом на его пальце! Франклин попробовал зарядить этой нитью и стеклянную емкость (иногда пишут, что это была лейденская банка).

Проводил ли он на самом деле этот очень опасный эксперимент или нет, до сих пор остается загадкой.

Современные конденсаторы имеют такие большие площади поверхности, что дают не просто искру, а настоящий электрический ток (правда, на короткое время).

Лейденская банка собирает чуть больше электричества, чем нужно для большой искры, однако и эта искра слишком скоротечна, чтобы говорить об электротоке. Но спустя 55 лет будут изобретены химические батареи, которые дадут первый электрический ток.

Меж тем само слово «батарея» было изобретено Бенджамином Франклином во времена лейденских банок, поскольку батареи этих соединенных между собой банок напоминали ему батареи пушек.

Флюиды из стекла и резины

В 1730-х годах французский физик Шарль Франсуа Дюфе обнаружил, что существует два вида электрических флюидов.

Те, которые присутствуют в веществах, похожих на янтарь (их назвали «резиноподобными»), и те, которые присутствуют в стекле (соответственно «стеклоподобные»).

Однотипные друг от друга отталкиваются, а разнотипные — притягиваются. В наши дни они получили известность как отрицательные и положительные заряды.

ссылкой

Лейденская банка или простейший конденсатор своими руками

Добрый день! Сегодня я бы хотел вам показать, как сделать лейденскую банку, простейшее устройство, в котором можно хранить электрический заряд.Статическое электричество это всего лишь недостаток или избыток электронов на поверхности предмета.Один из путей образования статического электричества — контакт двух разнородных предметов. Многие еще со школы помнят эксперимент с эбонитовой палочкой. Если потереть ее шерстью то часть электронов перебежит на палочку и шерсть останется заряжена положительно, а палочка из-за переизбытка электронов — отрицательно и сможет притягивать легкие предметы.В быту такая ситуация возникает например при расчесывании волос расческой. Можно даже слышать, как трещат электростатические разряды. Кстати, а знаете ли вы, что такие щелчки имеют напряжение в несколько тысяч вольт? Получается что с помощью обычной расчески можно получить просто огромное напряжение. Только вот заряд который может удержать расческа очень и очень мал. Заряд с расчески можно накопить в другом месте. Например в Лейденской банке . Лейденская банка является по сути простейшим конденсатором.( два проводника разделенные изолятором.Приступим к изготовлениюМатериалыКлассическая лейденская банка обычно делается из стеклянной банки, но у нее слишком толстые стенки, и заряд накапливается не особо большой. Поэтому мы будем использовать пластиковую банку с тонкими стенками. В качестве проводника будем использовать пищевую фольгу, или фольгу от шоколадки.Шаг 1Банку нужно покрыть ровным слоем фольги примерно на две трети в высоту, включая само донышко. Избегайте больших складок и разрывов.Шаг 2Теперь тоже самое нужно сделать изнутри, до той же высоты, что и внешняя обкладка. Шаг 3В центре банки закрепите приемник из фольги, который должен касаться фольги внутри банки. Верхнюю часть нужно вывести из банки наружу. Если вам лень возиться с оклейкой внутренней части банки,то можно просто налить туда соляного раствора ровно до того уровня, до которого фольга наклеена снаружи.( приемник должен одним концом касаться водыИтак, теперь у нас есть куда накапливать заряд с расчески. Чтобы сделать это, возьмитесь на наружную обкладку одной рукой и проводите рядом с приемником заряженной расческой другой рукой.Разрядить банку на себя можно взявшись рукой за обкладку и поднеся палец к приемнику. А еще можно сделать вот такой классный разрядник из куска фольги, который даст более ровную и красивую искру.На заметку: на пробой 1мм воздуха нужно напряжение в одну тысячу вольт. Кстати, влажность воздуха критически влияет на длину искры( чем суше у вас в квартире, тем длиннее будет искра)

Ну вот и все!Спасибо за внимание!Оригинальное видео автора:

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. .>Лейденская банка

Лейденская банка – прибор, запасающий электрический заряд.

Бизнес и финансы

БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумагиУправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги — контрольЦенные бумаги — оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудитМеталлургияНефтьСельское хозяйствоЭнергетикаАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьерОрганизация и управление производством

Лейденская банка как сделать в домашних условиях

Вообщем тема такая — лейденская банка это простейший конденсатор (проводник|изоляция|проводник) это такая штука которая накапливает энергию, в нашем случае статическое электричество. Делать мы её будем из фольги, электролита(солёная вода) и пластиковой бутылки. На фото наже показан внешний вид, бутылку снаружи обворачиваем фольгой, дно тоже, а внутрь до уровня воды наливаем солёную воду в которую опускаем палочку из фольги.Фольга и электролит будут проводниками, а стенка бутылки изолятором. Теперь держась одной рукой за внешнюю обкладку из фольги, расчесываемся и каждый раз касаемся пластмасовой расчёской (хотя бы раз 20) до палочки в солёной воде. Вот и всё! Теперь на внешней обкладке у нас недостаток электронов и она заряжена положительно, а в электролите (палочке из фольги) у нас избыток электронов и она заряжена отрицательно. Теперь можно разрядить нашу лейденскую бутылку. Для этого касаемся палочкой из воды внешней обкладки бутылки, будет характерная молния. Для пробития 1 миллиметра воздуха нужно 1000Вольт, вот и рассчитывайте по длине своей молнии сколько вы «начесали» напряжения. Чтобы ни у кого не было иллюзий таким напряжением убить нельзя, ибо слишком маленькая сила тока. Эффектнее будет если вы схватите одной рукой внешнюю обкладку, а пальцем другой руки коснётесь палочки из электролита ;).

Кажись у Alex Gyver была похожая идея, впрочем мы оба повоторили эксперемент Питера ван Машенбурга, в разных формах

История

См. также: История Лейдена

Лейден появляется на страницах летописей в 922 году как владение епископа Утрехтского. В XII веке здесь был построен замок, вокруг которого велась бойкая торговля. Во время Столетней войны многие ипрские ткачи бежали в Лейден, заложив основу местной текстильной промышленности. В 1581 году в Лейдене развернули свою деятельность известные на всю Европу печатники Эльзевиры.

Во время Восьмидесятилетней войны город с мая по октябрь осаждали испанцы. Для снятия осады голландцам пришлось открыть шлюзы и затопить городские окрестности. Морские суда прибыли непосредственно в город и доставили лейденцам съестные припасы. В награду за храбрость горожан Вильгельм Оранский дал согласие на открытие в городе университета, ставшего в XVII веке крупнейшим центром протестантского образования.

Известные уроженцы и жители города

  • Рембрандт (1606—1669) — художник, самый знаменитый уроженец Лейдена.
  • Вильгельм II (1228—1256) — граф Голландии и Зеландии с 1235, король Германии (Вильгельм) с 3 октября 1247 года.
  • Давид Байи (1584—1657) — художник золотого века Голландии.
  • Герман Бургаве (1668—1738) — физик и гуманист.
  • Альбинус, Бернард Зигфрид (1697—1770) — анатом.
  • Брэдфорд, Уильям (1590—1657) — один из отцов-пилигримов и основателей Плимутской колонии на территории современного Массачусетса, США
  • Герард Доу (1613—1675) — художник, принадлежит к кругу «малых голландцев».
  • Энгелбрехтсен, Корнелис (1462—1527) — живописец, рисовальщик и художник по стеклу, учитель Лукаса и Артгена ван Лейденов.
  • Ян ван Гойен (1596—1656) — художник-пейзажист.
  • Иоанн Лейденский (1509—1536) — вождь мюнстерских анабаптистов.
  • Лукас ван Лейден (1494—1533) — живописец и гравёр.
  • Артген ван Лейден (1498—1564) — живописец и гравёр.
  • Маринус ван дер Люббе (1909—1934) — признан виновным в поджоге Рейхстага в Берлине в 1933 году.
  • Габриель Метсю (1629—1667) — художник, мастер жанровой, портретной и исторической живописи.
  • Пост, Франс (1612—1680) — художник.
  • Ян Стен (1626—1679) — художник.
  • Якоб Торенвлит (1640—1719) — художник.
  • Питер ван дер Аа (1659—1733) — издатель карт и атласов.
  • Тео ван Дусбург (1883—1931) — нидерландский художник, архитектор и скульптор, теоретик искусства.
  • Виллеброрд Снелл (1580—1626) — математик, физик и астроном.
  • Ян Дидерик Ван-дер-Ваальс (1837—1923) — физик, лауреат Нобелевской премии по физике в 1910 г.
  • Хейке Камерлинг-Оннес (1853—1926) — физик и химик.
  • Хендрик Лоренц (1853—1928) — выдающийся нидерландский физик.
  • Питер Зееман (1865—1943) — физик, лауреат Нобелевской премии по физике в 1902 г., совместно с Хендриком Лоренцем.
  • Виллем де Ситтер (1872—1934) — математик, физик, астроном.
  • Пауль Эренфест (1880—1933) — физик.
  • Хендрик Казимир (1909—2000) — физик.
  • Ян Хендрик Оорт (1900—1992) — астроном.
  • Виллем Эйнтховен (1860—1927) — врач, физиолог.
  • Нина Фох (1924—2008) — американская актриса, преподаватель кинематографического искусства.
  • Тиле, Корнелис Петер (1830—1902) — голландский учёный-теолог, историк религии, священник, ориенталист, педагог, один из основателей религиоведения.
  • Армин ван Бюрен (1976—) — нидерландский музыкант, диджей и музыкальный продюсер.
  • Верстег, Дейв (1976—) — шорт-трекист, четырёхкратный призёр чемпионата Европы по шорт-треку 1997, 1998, 1999, 2001 и 2005
  • Гегард Мусаси (1985—) — профессиональный боец смешанных единоборств армянского происхождения.

Применение электрофорной машины

С 70-х гг. машина Вимшурста не используется для непосредственной добычи электрической энергии. Сегодня она выступает историческим экспонатом, иллюстрирующим историю возникновения и развития научно-технического прогресса и инженерной мысли. Лабораторная демонстрация, для чего создают электрофорную машину, показывает различные явления и эффекты электричества.

Допустимо использование индукционных нейтрализаторов, снимая заряды с жидких диэлектриков, например нефти. На любом производстве в воздухе получить искру опасно, это может привести к пагубным последствиям, задымлению и даже взрыву.

История открытий и исследований в области электричества имеет тесную связь с применением различных конструкций и устройств для получения электрических зарядов. Свою роль в научных изысканиях сыграла электрофорная машина, действие которой основано на возбуждении электричества благодаря индукции.

дизайн

Строительство лейденской банки.

Типичная конструкция состоит из стеклянной емкости с проводящей оловянной фольгой, покрывающей внутреннюю и внешнюю поверхности. Покрытия из фольги не доходят до горловины банки, чтобы предотвратить искрение заряда между фольгами. Металлический стержневой электрод выступает через непроводящую пробку в горловине банки, электрически соединенный некоторыми средствами (обычно подвесной цепью) с внутренней фольгой, чтобы позволить ей заряжаться. Банку заряжают электростатическим генератором или другим источником электрического заряда, подключенным к внутреннему электроду, а внешняя фольга заземлена . На внутренней и внешней поверхностях емкости хранятся одинаковые, но противоположные заряды.

Изначально устройство представляло собой стеклянную бутылку, частично наполненную водой, с закрывающей ее металлической проволокой, проходящей через пробку. Роль внешней пластины обеспечивается рукой экспериментатора. Вскоре Джон Бевис обнаружил (в 1747 году), что можно покрыть внешнюю поверхность сосуда металлической фольгой, и он также обнаружил, что может достичь того же эффекта, используя стеклянную пластину с металлической фольгой с обеих сторон. Эти разработки вдохновили Уильяма Ватсона в том же году на создание кувшина с внутренней и внешней облицовкой из металлической фольги, что исключает необходимость использования воды.

Ранние экспериментаторы (такие как Бенджамин Уилсон в 1746 году) сообщили, что чем тоньше диэлектрик и больше поверхность, тем больший заряд может быть накоплен.

Дальнейшие разработки в области электростатики показали, что диэлектрический материал не является существенным, но увеличивает накопительную способность ( емкость ) и предотвращает образование дуги между пластинами. Две пластины, разделенные небольшим расстоянием, также действуют как конденсатор даже в вакууме .

Способы доставки

  • Курьером
  • Почтой
  • Транспортной компанией

Исследование атмосферного электричества

В поисках более безопасных методов измерения «электрической громовой силы» М.В. Ломоносов разработал своеобразный автоматический регистратор максимального значения грозового разряда после удара молнии по прибору «сему увидеть можно коль велика была самая большая громовая сила».

Основываясь на многочисленных опытах, М.В. Ломоносов пришел к выводу о целесообразности широкого применения громоотводов. Он писал: «Такие стрелы на местах, от обращения человеческого по мере удаленных, ставить за небесполезное дело почитаю, дабы ударяющая молния больше на них, нежели на головах человеческих и на храминах, силы свои изнуряла».

В отличие от Б. Франклина М.В. Ломоносов правильно указал на решающую роль заземления в устройстве громоотвода.

1 – металлический стержень с трезубцем

2 –проволочная пружина, припаянная к металлическому кружку.

Получив одноименный заряд, витки Прибор Ломоносова пружины стремятся оттолкнуться, увлекая за

Математическое выражение емкости

Находятся люди, ненавидящие исторические экскурсы, веселые анекдоты, приведенные ниже, подробное изложение. Посещают интернет, выуживая формулу электроемкости лейденской банки, хотят немедленно видеть. Пожалуйста:

C = q/U, q – накапливаемый лейденской банкой заряд, U – разница потенциалов между выводами. Иное выражение позволяет выразить электроемкость конденсатора площадью обкладок, расстоянием меж ними:

электроемкость конденсатора повышается ростом площади, уменьшением зазора. ε – диэлектрическая проницаемость вещества между обкладками, ε(0) – электрическая постоянная, равная 8,85 пФ/м.

По указанным причинам наибольшей электроемкостью обладают электролитические конденсаторы оксидного типа. Обкладки расположены впритык.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации