Андрей Смирнов
Время чтения: ~17 мин.
Просмотров: 0

Может ли указка ослепить пилота: маленькие лазеры

Фигурное выжигание

Тем не менее в сознании большин­ства читателей лазеры ассоциируются с «прожигающим» лучом. И вполне справедливо: станки с лазерным раскроем работают на множестве производств, разрезая самые различные материалы — от полимерных пленок до стальных листов. Правда, и мощность лазеров там исчисляется вовсе не милливаттами. Впрочем, прогресс в этой области шагнул настолько далеко, что в настоящее время такой станок можно построить и в домашних условиях. Для этого идеальны мощные полупроводниковые фиолетовые (405 нм) и сине-фиолетовые лазеры (445 нм). Они отличаются хорошим соотношением цены и мощности, а их излучение хорошо поглощается большинством материалов. К тому же, как правило, производители предусматривают в таких портативных лазерах (называть их указками уже не совсем корректно) возможность регулировать фокусировку луча.

Технологии
Эпоха акробатов: однорельсовые железные дороги

Лазерный арсенал

Самым интересным из попавших в наши руки однозначно стал сине-фиолетовый (445 нм) лазер мощно­стью 1 Вт. При тщательном соблюдении техники безопасности этот лазер может стать инструментом для множества научно-популярных экспериментов и отличным развлечением. Необычный цвет, высокая стабильность, регулируемая фокусировка и сокрушающая мощь способны на долгое время заставить забыть обо всех других лазерах! Его луч прекрасно виден в вечернем небе, отраженный от потолка свет легко освещает довольно большую комнату, а при соответствующей фокусировке он легко режет бумагу и за пару минут даже может проделать отверстие в дереве толщиной более 3 мм. К тому же такие лазеры принципиально имеют довольно большую расходимость — в 3−10 раз больше, чем у других типов, но в данном случае это скорее плюс, поскольку снижает опасность для окружающих. Впрочем, большая мощность и малая длина волны приводят к высокой опасности для зрения даже при наблюдении отраженного и рассеянного света, поэтому при работе с этим лазером нужно обязательно использовать защитные очки, отсекающие большую часть опасного излучения.

В качестве импровизированной защиты можно использовать стандартные очки с желтыми фильтрами для повышения контраста (например, стрелковые).

Фиолетовые (405 нм) лазеры мощнее 300 мВт сейчас найти затруднительно, но за счет лучшей фокусировки по своим «зажигательным» способностям они весьма близки к 1-Вт сине-фиолетовому (445 нм) лазеру. На расстоянии 5−10 м 300-мВт фиолетовая указка догоняет одноваттного монстра, а далее и вовсе обходит и при этом стоит дешевле. Однако и прожечь что-нибудь на таком расстоянии можно только в том случае, если и лазер, и мишень будут закреплены неподвижно. Так что пока лазерные копья Звездной Гвардии остаются уделом фантастических сериалов. Кроме выжигания, фиолетовая указка интересна тем, что заставляет ярко светиться многие материалы, подобно ультрафиолетовой лампе. Для защиты зрения от отраженного и рассеянного света также подойдут очки с желтыми светофильтрами.

Испытать всю испепеляющую мощь одноваттной указки мы решили на современный манер, построив двухкоординатный выжигательный станок с ЧПУ из конструктора Fischertechnik. За основу мы взяли набор ROBO TX Automation Robots, укомплектовав его компьютерным контроллером ROBO TX. Несмотря на слегка игрушечный вид, это серьезный контроллер с исчерпывающим набором входов и выходов для сервоприводов, световых индикаторов, переключателей, сенсоров (фоторезистор, ультразвуковой радар, датчик цвета, микрофон). Контроллер подключается к компьютеру по USB или Bluetooth. Мы запрограммировали станок на точечное выжигание: на каждом «пикселе» рисунка указка задерживалась на 5 секунд и успевала прожечь отчетливое черное пятно, после чего лазерный луч смещался на шаг и продолжал выжигание. Работу несколько осложнил тот факт, что во избежание перегрева указка не должна непрерывно работать дольше 30 секунд, поэтому каждые полминуты приходилось ставить программу на паузу. Выжигание простого рисунка заняло у нас чуть больше часа.

Непрерывные лазеры

Ширина лазерной линии в типичном одномодовом гелий- неоновом лазере с поперечной модой (на длине волны 632,8 нм) при отсутствии внутрирезонаторной оптики для сужения линии может быть порядка 1 ГГц. Лазеры с распределенной обратной связью на основе диэлектриков или полупроводников, легированных редкоземельными элементами, имеют типичную ширину линии порядка 1 кГц. Ширина лазерной линии стабилизированных маломощных лазеров непрерывного действия может быть очень узкой и доходить до менее 1 кГц. Наблюдаемая ширина линии больше, чем основная ширина линии лазера из-за технических шумов (временные флуктуации мощности оптической накачки или тока накачки, механические колебания, изменения показателя преломления и длины из-за температурных флуктуаций и т. Д.).

Устройство лазера[править | править код]

Основная статья:

Все лазеры состоят из трёх основных частей:

  • активной (рабочей) среды;
  • системы накачки (источник энергии);
  • оптического резонатора (может отсутствовать, если лазер работает в режиме усилителя).

Каждая из них обеспечивает для работы лазера выполнение своих определённых функций.

Активная средаправить | править код

,

где:

  • N — число атомов, находящихся в возбуждённом состоянии с энергией E,
  • N — число атомов, находящихся в основном состоянии,
  • k — постоянная Больцмана,
  • T — температура среды.
,

где:

  • I — начальная интенсивность,
  • Il — интенсивность излучения, прошедшего расстояние l в веществе,

В том случае, когда число возбуждённых атомов больше, чем невозбуждённых (то есть в состоянии инверсии населённостей), ситуация прямо противоположна. Акты вынужденного излучения преобладают над поглощением, и излучение усиливается по закону:

,

где:

a2 — коэффициент квантового усиления. В реальных лазерах усиление происходит до тех пор пока величина поступающей за счёт вынужденного излучения энергии не станет равной величине энергии, теряемой в резонаторе. При этом возможна работа только в импульсном режиме, поскольку требуются очень большие плотности энергии накачки, вызывающие при длительном воздействии сильный разогрев и разрушение стержня рабочего вещества

Система накачкиправить | править код

На рисунке: а — трёхуровневая и б — четырехуровневая схемы накачки активной среды лазера.

Следует отметить, что создать инверсию населённостей атомов хрома Cr с помощью накачки непосредственно с уровня E на уровень E1 нельзя. Это связано с тем, что если поглощение и вынужденное излучение происходят между двумя уровнями, то оба эти процесса протекают с одинаковой скоростью. Поэтому в данном случае накачка может лишь уравнять населённости двух уровней, чего недостаточно для возникновения генерации.

В некоторых лазерах, например в неодимовом, активной средой которого является специальный сорт стекла, легированный ионами неодима Nd3+, используется четырехуровневая схема накачки. Здесь между метастабильным E2 и основным уровнем E имеется промежуточный — рабочий уровень E1. Вынужденное излучение происходит при переходе атома между уровнями E2 и E1. Преимуществом этой схемы является то, что порог генерации достигается, когда населённость метастабильного уровня становится больше населённости рабочего уровня, которая незначительна в состоянии термодинамического равновесия, поскольку последний находится достаточно далеко от основного уровня. Это значительно снижает требования к источнику накачки

Кроме того, подобная схема позволяет создавать мощные лазеры, работающие в непрерывном режиме, что очень важно для некоторых применений.

Оптический резонаторправить | править код

,

При более строгом расчёте необходимо учитывать, что усиливаются волны, распространяющиеся не только параллельно оптической оси резонатора, но и под малым углом к ней. Условие усиления тогда принимает вид:

Закуски

Живая инсталляция

Рецепт «Тонкие лепешки с сулугуни»:

Лазер:

XX век подарил человечеству множество изобретений и открытий, и одним из величайших среди них считается лазер. Если несколько десятков лет назад он был воплощением произведений фантастов, то сегодня его использование актуально во многих сферах и отраслях промышленности, медицины, производства.

Свое название изобретение получило от сокращения его англоязычной аббревиатуры LASER (light amplification by stimulated emission of radiation), что в переводе означает «усиление света посредством вынужденного излучения».

Впервые возможность создания лазера как устройства была предсказана еще Альбертом Эйнштейном в 1916 году. Ученый спрогнозировал, что атомы молекул при достаточном воздействии из вне способны изменять свое энергетическое состояние и переходить с высшего энергетического состояния на низшее. В результате такого перехода определенная часть энергии переходит в свободное состояние – это и есть вынужденное излучение, являющееся основой работы лазеров.

По своей сути лазер или оптический квантовый генератор – это устройство, где на квантово-механический эффект, коим является вынужденное излучение, воздействует внешнее электромагнитное излучение, в результате чего освободившаяся энергия (тепловая, световая, электрическая, химическая и прочая) образует световой луч. Он (световой луч) тоже представляет собой энергию, и превращается в потоки излучения:

– когерентного, т.е. согласованного (скоррелированного) протекания во времени нескольких колебательных или волновых процессов, проявляющееся при их сложении. Колебания когерентны, если разность их фаз постоянна во времени, и при сложении колебаний получается колебание той же частоты;

– монохроматического, т.е.  обладающего очень малым разбросом частот, в идеале – одной частотой (длиной волны);

– поляризованного, т.е. с направленным колебанием векторов напряженности электрического и магнитного полей;

– и узконаправленного характера.

Потоки света и излучение лазера имеют две формы:

– непрерывную (с неизменной амплитудой и постоянной мощностью);

– импульсную (экстремально высокие – пиковые мощности достигаются постепенно).

Лазер – это генератор когерентного электромагнитного излучения в оптическом диапазоне, основанный на использовании индуцированных переходов. При этом под оптическим диапазоном понимается диапазон длин волн от 10-9 до 10-3 м.

Как устроен лазер

В конструкцию лазера входят 3 элемента:

1.Источник энергии, который называют механизмом «накачки» лазера.

2.Рабочее тело лазера.

3.Система зеркал, или оптический резонатор.

Источники энергии могут быть разными: электрические, тепловые, химические, световые и др. Их задача — «накачать» энергией рабочее тело лазера, чтобы вызвать в нём генерацию светового лазерного потока. Источник энергии называют механизмом «накачки» лазера. Им могут быть химическая реакция, другой лазер, импульсная лампа, электрический разрядник и др.

Рабочим телом, или лазерными материалами, называют вещества, выполняющие функции активной среды. Собственно в рабочем теле и зарождается лазерный луч. Как же это происходит?

В самом начале процесса рабочее тело находится в состоянии термодинамического равновесия, а большинство атомов — в нормальном состоянии. Для того чтобы вызвать излучение, необходимо подействовать на атомы, чтобы система перешла в состояние инверсии населённости. Эту задачу и выполняет механизм накачки лазера. Как только новый фотон появится в одном атоме, он запустит процесс образования фотонов в других атомах. Этот процесс вскоре станет лавинообразным. Все образующиеся фотоны будут иметь одинаковую частоту, а световые волны сформируют световой луч огромной мощности.

В качестве активных сред в лазерах используют твёрдые, жидкие, газообразные и плазменные вещества. Например, в первом лазере, созданном в 1960 г., активной средой был рубин.

Рабочее тело помещается в оптический резонатор. Самый простой из них состоит из двух параллельных зеркал, одно из которых полупрозрачное. Часть света оно отражает, а часть пропускает. Отражаясь от зеркал, пучок света возвращается обратно и усиливается. Это процесс повторяется многократно. На выходе из лазера образуется очень мощная световая волна. Зеркал в резонаторе может быть и больше.

Кроме того, в лазерах используют и другие устройства — зеркала, способные менять угол поворота, фильтры, модулятора и др. С их помощью можно изменять длину волны, длительность импульсов и других параметров.

Транспортиры

Это еще один необходимый при создании чертежей инструмент. Используются транспортиры в основном в качестве дополнения, предназначенного для облегчения работы. С их применением гораздо проще вычерчивать углы. Транспортиры бывают полукруглые и круглые. При составлении чертежей чаще используется первый вариант. Существуют также специальные геодезические транспортиры. Для составления топографических карт обычно использует вариант ТГ-Б.

Вьющиеся цветы для арок в саду, сорта, фото

Ссылки

Импульсные лазеры

Ширина лазерной линии мощных импульсных лазеров с высоким коэффициентом усиления при отсутствии внутрирезонаторной сужающей оптики может быть довольно широкой, а в случае мощных широкополосных лазеров на красителях она может варьироваться от нескольких нм до 10 нм. .

Ширина лазерной линии от мощных импульсных лазерных генераторов с высоким коэффициентом усиления, включающих оптику сужения линии, является функцией геометрических и дисперсионных характеристик лазерного резонатора . В первом приближении ширина линии лазерного излучения в оптимизированном резонаторе прямо пропорциональна расходимости пучка излучения, умноженной на величину, обратную общей дисперсии внутри резонатора . То есть,

Δλ≈Δθ(∂Θ∂λ)-1{\ displaystyle \ Delta \ lambda \ приблизительно \ Delta \ theta \ left ({\ partial \ Theta \ over \ partial \ lambda} \ right) ^ {- 1}}

Это известно как уравнение ширины линии резонатора, где — расходимость луча, а член в скобках (увеличенный до –1) — это общая внутрирезонаторная дисперсия. Это уравнение изначально было получено из классической оптики. Однако в 1992 году Дуарте вывел это уравнение из квантовых интерферометрических принципов, таким образом связав квантовое выражение с общей угловой дисперсией внутри резонатора.
Δθ{\ displaystyle \ Delta \ theta}

Оптимизированный лазерный генератор с несколькими призматическими решетками может излучать импульсы в режиме кВт с шириной линии одной продольной моды ≈ 350 МГц (что эквивалентно ≈ 0,0004 нм при длине волны лазера 590 нм). Поскольку длительность импульса этих генераторов составляет около 3 нс, характеристики ширины линии лазера близки к пределу, допускаемому принципом неопределенности Гейзенберга .
Δν{\ displaystyle \ Delta \ nu}Δλ{\ displaystyle \ Delta \ lambda}

Практическое использование лазеров

На сегодняшний день лазеры разных типов применяются в десятках отраслей промышленности, медицины, IT технологий и других сферах деятельности. С их помощью осуществляются:

  • резка и сварка металлов, пластмасс, других материалов;
  • нанесение изображений, надписей и маркировка поверхности изделий;
  • сверление сверхтонких отверстий, прецизионная обработка полупроводниковых кристаллических деталей;
  • формирование покрытий изделий напылением, наплавкой, поверхностным легированием и т.д.;
  • передача информационных пакетов при помощи стекловолокна;
  • выполнение хирургических операций и других лечебных воздействий;
  • косметологические процедуры омоложения кожи, удаления дефектных образований и др.;
  • наведение на цель различных видов вооружений, от стрелкового до ракетного оружия;
  • создание и использование голографических методов;
  • применение в различных научно-исследовательских работах;
  • измерение расстояний, координат, плотности рабочих сред, скорости потоков и многих других параметров;
  • запуск химических реакций для проведения различных технологических процессов.

Существует ещё немало направлений, в которых лазеры уже используются или найдут применение в самое ближайшее время.

Обзор приборов

Особой популярностью у клиенток пользуется итальянская продукция.

Molecule Professional

Средняя цена 8 тыс. руб. Инновационный прибор для волос занимает лидирующие позиции по использованию в индустрии красоты. Восстановление шевелюры с этим стайлером максимально упрощено, поскольку действие любой маски или лосьона устройство усиливает в десятки раз. Регенерация происходит на клеточном уровне.

Проведение процедур с Molecule отличается накопительным эффектом, однако уходовое средство важно подбирать правильно. Оптимальный вариант — косметика, компоненты которой способны проникать в глубокие слои волосяной структуры

Примером служат сыворотки, масла и маски.

Достоинства:

  • стильный дизайн;
  • оснащение дисплеем и вращающимся шнуром;
  • возможность выбора мощности;
  • универсален для профессионального и домашнего ухода;
  • высокая эффективность;
  • восстановление структуры;
  • придание эластичности и блеска.

Недостатком ультразвукового устройства является высокая цена.

HairON Professional Red Care

Средняя цена: 4500 руб. Щипцы разработаны для интенсивного ухода за волосяной структурой. Инфракрасное излучение нагревает аминокислоты и запечатывает чешуйки, а ультразвуковое разделяет компоненты восстанавливающего средства на молекулы для максимизации регенерирующих свойств.

В результате применения методики пряди крепнут, разглаживаются и становятся эластичными. Для применения заранее наносят лечебный продукт на локоны, делят шевелюру на пряди и проводят по каждой зоне по 7 раз.

Плюсы:

  • приемлемая цена;
  • глубокая регенерация волоса;
  • улучшение микроциркуляции;
  • послушность, сияние и гладкость;
  • универсален для лечения и профилактики.

Минус прибора — отсутствие дисплея, позволяющего контролировать процесс работы.

UkiSonic

Средняя цена 8 тыс. руб. Холодный стайлер восстанавливает и лечит шевелюру. Аппарат способен реанимировать даже очень поврежденные локоны.

Устройство оборудовано ультразвуковым полотном и инфракрасным. За счет действия первой пластины вещества ухаживающих масок и лосьонов преобразуются в молекулы, благодаря чему им становится гораздо проще проникнуть в самую глубь структуры. Там активные компоненты восстанавливают межклеточные соединения и заполняют пустоты. С помощью инфракрасных лучей разглаживается кутикула, образующая верхний слой волоса.

Сочетание двух уникальных полотен обеспечивает надежное запечатывание внутри пряди полезных элементов. На чистые волосы следует нанести любимый лечебный продукт и провести утюжком по всем локонам, проводя по каждой пряди прибором 5 раз.

Плюсы аппарата:

  • профессиональный уход;
  • реанимирование даже сильных повреждений;
  • турмалиновые пластины;
  • оснащение индикатором режима работы.

Недостатками устройства являются высокая цена и отсутствие дисплея.

Какие возможности открывает мощный лазер?

  • Сигнализация на дальние расстояния. Мощный лазер может заменить собой пиротехнические сигнальные средства. Особенно он эффективен в горной местности при хорошей видимости из населенных пунктов;
  • Проведение измерений больших расстояний. Например, лазерной указкой green laser на 10 Вт можно провести замер кривизны земной поверхности;
  • Использование мощного лазера в качестве источника света для стробоскопов и других развлекательных приборов. Оптические насадки для деления луча, высвечивания различных фигур и надписей выпускаются в бесчисленном многообразии. В них всегда можно найти самые неожиданные варианты;
  • Лазерный тир с прожиганием шариков лазером. Устройство работает лишь на небольшом расстоянии;
  • Лазерная ограда на большие расстояния. Фотореле, самодельные лидары, оптические станции связи и другие приборы.

Отдельное направление связано с использованием мощных лазерных указов для гравировки. На это годятся только самые мощные модели свыше 10 Вт. Гравировка возможна на мягких материалах, например, на древесине.

Лазерное излучение: защита

Каждая лаборатория должна обеспечить соответствующую защиту лиц, работающих с лазерами. Окна помещений, через которые может проходить излучение устройств 2, 3 или 4 класса с нанесением вреда на неконтролируемых участках, должны быть покрыты или иным образом защищены во время работы такого прибора. Для обеспечения максимальной защиты глаз рекомендуется следующее.

  • Пучок необходимо заключить в неотражающую негорючую защитную оболочку, чтобы свести к минимуму риск случайного воздействия или пожара. Для выравнивания луча использовать люминесцентные экраны или вторичные визиры; избегать прямого воздействия на глаза.
  • Для процедуры выравнивания луча использовать наименьшую мощность. По возможности для предварительных процедур выравнивания использовать устройства низкого класса. Избегать присутствия лишних отражающих объектов в зоне работы лазера.
  • Ограничить прохождение луча в опасной зоне в нерабочее время, используя заслонки и другие преграды. Не использовать стены комнаты для выравнивания луча лазеров класса 3b и 4.
  • Использовать неотражающие инструменты. Некоторый инвентарь, не отражающий видимый свет, становится зеркальным в невидимой области спектра.
  • Не носить отражающие ювелирные изделия. Металлические украшения также повышают опасность поражения электрическим током.

Инверсная заселенность. Создание когерентного излучения:

Перемещаясь по уровням атома, электроны создают (выделяют) его энергию: чем они выше, тем она больше, а опускаясь – поглощают ее. Чем выше энергия атома, тем больше он возбужден, но это отражается и на его устойчивости – она слабеет. В определенный момент времени электроны все же изменят уровень на более низкий, выделив фотон – электромагнитное излучение. Учитывая, что такой переход спонтанный, выделяемое излучение происходит разобщенно, поэтому и образующийся луч является несогласованным.

Если же излучение (выделение энергии) проводится направленно, при воздействии электромагнитной волны, чья частота близка к частоте перехода атома, возникнет иной эффект. Полученный резонанс дестабилизирует атом и все электроны «упадут» с верхних «ярусов» на нижние. При таком спровоцированном воздействии световая волна будет идентична первичной волне по всем трем параметрам:

– частоте;

– направленности;

– фазе.

Все образующиеся волны имеют согласованное (когерентное) направление, и суммарно они увеличивают интенсивность излучения, т.е. количество его квантов.

Заселенность – это количество атомов на определенном энергетическом уровне (En). Если заселенность более высокого уровня (Е2) выше, чем ниже расположенного (Е1), образуется инверсная заселенность. Так и активное вещество – это среда, где возбужденных атомов больше, чем тех, что находятся в состоянии покоя. Если подобная среда будет подвержена воздействию электромагнитной волны, электроны поднимутся на выше расположенные уровни, и возникнет усиленное этим воздействием излучение. Причина проста – каждый квант электромагнитной волны порождает идентичный фотон, эти два образуют четыре фотона, те – восемь и так далее. Все это приводит к появлению фотонной лавины.

Однако данная ситуация весьма условна и возможна лишь в идеальных условиях. В реальных же существуют факторы, провоцирующие утрату электромагнитной волной энергии: ее поглощают примеси, которые содержит активная среда, она рассеивается в ее неоднородных слоях и т.д. Усилить же ее можно путем продления длины пробега в активной среде, что возможно весьма условно. Поэтому был создан резонатор: многократно отражаясь от двух параллельно расположенных зеркал, волна проходит достаточное расстояние для получения нужного уровня усиления, но при условии, что сохранится инверсионная заселенность.

Обеспечивать нужное число электронов на высоких уровнях возможно при использовании отдельного источника энергии – что означает, что необходимо проводить накачку активной среды источниками энергии. Подобные источники энергии могут быть самыми разными: протекающая химическая реакция, установленная электрическая лампа, направленный разряд электроэнергии и прочие. Есть и определенные условия:

– накопление электронов на верхних слоях атомах. Их должно скопиться не менее половины от общего числа;

– уровень энергии. Он должен превысить определенные показатели, иначе потери превысят накачку, что приведет к малой мощности на выходе.

После достижения состояния инверсии, некоторые электроны начнут спонтанный спуск на более низкий энергетический уровень, при котором возникнут кванты (фотоны). Те фотоны, которые были выпущены под углом к оси резонатора, вызовут короткий цикл излучений в выбранном направлении и исчезнут из активной среды. Те фотоны, чье движение будет направлено вдоль оси резонатора, смогут бесконечное количество раз отразиться в зеркалах резонатора, что и приведет к появлению согласованного (когерентного) излучения.

Опасность для глаз

Человеческий глаз более подвержен травмам, чем кожа. Роговица (прозрачная внешняя передняя поверхность глаза), в отличие от дермы, не имеет внешнего слоя омертвевших клеток, защищающих от воздействия окружающей среды. Лазерное и ультрафиолетовое излучение поглощается роговицей глаза, что может нанести ей вред. Травма сопровождается отёком эпителия и эрозией, а при тяжёлых повреждениях – помутнением передней камеры.

Хрусталик глаза также может быть подвержен травмам, когда на него воздействует различное лазерное излучение – инфракрасное и ультрафиолетовое.

Наибольшую опасность, однако, представляет воздействие лазера на сетчатку глаза в видимой части оптического спектра — от 400 нм (фиолетовый) до 1400 нм (ближний инфракрасный). В пределах этой области спектра коллимированные лучи фокусируются на очень маленьких участках сетчатки. Наиболее неблагоприятный вариант воздействия происходит, когда глаз смотрит вдаль и в него попадает прямой или отражённый луч. В этом случае его концентрация на сетчатке достигает 100 000 крат.

Таким образом, видимый пучок мощностью 10 мВт/см2 воздействует на сетчатку глаза с мощностью 1000 Вт/см2. Этого более чем достаточно, чтобы вызвать повреждение. Если глаз не смотрит вдаль, или если луч отражается от диффузной, не зеркальной поверхности, к травмам ведёт значительно более мощное излучение. Лазерное воздействие на кожу лишено эффекта фокусировки, поэтому она гораздо меньше подвержена травмам при этих длинах волн.

Как мод выглядит в игре

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации