Андрей Смирнов
Время чтения: ~20 мин.
Просмотров: 0

Какой выбрать лабораторный блок питания в 2020 году: топ-13 лучших моделей

Как сделать блок питания?

У начинающего радиолюбителя когда-нибудь возникнет вопрос: как сделать простой блок питания самостоятельно в домашних условиях.

Перво-наперво необходимо определить, какой именно блок питания нужен и для каких точно целей. Блоки питания могут использоваться в разных сферах многими домашними мастерами.

Для того, чтобы сделать самостоятельно блок питания, необходимо разобраться с тем, как он устроен и как работает. Это поможет в дальнейшем осуществлять небольшой ремонт устройства при необходимости.

Определяем, какой именно блок нужен – регулируемый либо нет. Заранее, перед выполнением работ, необходимо найти все инструкции и схемы блоков питания, которые помогут сделать нужный вам прибор.

Регулируемый – это прибор, у которого можно изменить выходное напряжение (допускается изменение в пределах от 3 до 12 вольт). Например, если мы хотим получить 7 или 10 вольт – нам нужно будет всего лишь повернуть ручку регулятора.

Нерегулируемый прибор – имеет фиксированное выходное напряжение, которое нельзя изменить. К примеру, блок питания «Электроника» Д2-27 нельзя регулировать, и он выдает на выходе всегда 12 вольт.

Самые интересные для радиолюбителей являются регулируемые блоки питания. Они позволяют запитать достаточно много устройств (самодельных либо промышленных), которым понадобится разное напряжение питания.

Фото самодельного блока питания можно найти в журналах для радиолюбителей либо в интернете.

Диоды для блока питания

Выбор полупроводниковых диодов, используемых в выпрямителе блока питания, напрямую зависит от того, какие значения параметров трансформатора необходимо получить. Чем больше сила тока на вторичной обмотке, тем мощнее диоды необходимо использовать. Предпочтение стоит отдавать тем деталям, которые изготовлены на основе кремния. Но не стоит брать высокочастотные, так как они не предназначены для использования в выпрямительных устройствах. Их основное предназначение – детектирование высокочастотного сигнала в радиоприемных и передающих устройствах.

Идеальное решение для маломощных блоков питания – это применение диодных сборок, блок питания 12В 5А с их помощью можно разместить в гораздо меньшем корпусе. Диодные сборки — это набор из четырех полупроводниковых диодов. Используются они исключительно для выпрямления переменного тока. Работать с ними гораздо удобней, не нужно делать много соединений, достаточно на два вывода подать напряжение от вторичной обмотки трансформатора, а с оставшихся снять постоянное.

На что обратить внимание при выборе блока питания для компьютера

Выбирая блок питания, очень легко ошибиться — их много, а характеристики моделей не на слуху. Новичок, задавшийся целью поменять БП в своём системном блоке, будет поставлен в тупик разнообразием в ценах и характеристиках

Лучшим вариантом будет обратить внимание на отдельные характеристики, а затем отобрать устройства с наилучшим соотношением этих параметров, приемлемой ценой и высокой надёжностью

Выбираем блок питания правильно

Форм-фактор

Проще говоря, это внешний вид и параметры габаритов устройства, которые позволяют установить его в стандартный системный блок. Рядовой пользователь вряд ли столкнётся с каким-либо иным форматом, кроме ATX. Правда, менее распространённые системные блоки форматов microATX или иные требуют особого форм-фактора вроде SFX, TFX или Flex, поэтому обладателю мало распространённых типов нужно уточнить спецификацию своего корпуса.

При этом любой ATX может быть установлен как вверху, так и внизу системного блока, в зависимости от конфигурации последнего.

Мощность

Для обычного юзера эта характеристика — самая показательная. Мысль идёт по пути «чем мощнее — тем лучше». Однако на практике это верно далеко не всегда. Например, явным перерасходом средств будет покупка целого комплекта мощных БП для офисных машин, которые никогда не потребуют больше 300 — 350 Вт, да и то в пиковой загрузке. Вообще компьютеры без дискретной видеокарты потребляют не слишком много, даже при наличии мощного процессора.

Средний уровень домашнего компьютера — когда к просмотру интернета и виде в хорошем качестве добавляется периодическая игра в игры на средних настройках, уже потребует около 500 Вт выходной мощности. При этом нужно отдавать себе отчёт в том, что бюджетные БП обычно имеют просадку по вольтажу при работе под нагрузкой, то есть в реальности будут выдавать на несколько десятых вольта и десятков ватт меньше, чем номинально указано на упаковке.

Геймерские машины характеризуются высоким энергопотреблением. Помимо основных комплектующих электричество потребляет мощная воздушная, а иногда и водяная система охлаждения. Здесь лучше остановиться на значениях в 750 — 1200 Вт.

Наличие разъёмов и длина проводов

Из блока питания выходит целый пучок разноцветных (в более дорогих вариантах в монохромной оплётке) кабелей,которые оканчиваются стандартными разъёмами. Средний блок питания обязательно должен иметь подключения к материнской плате, процессору, паре видеокарт, жёстким дискам, а также другим платам и аксессуарам, набор которых зависит от конкретного системного блока.

Стандартные разъёмы блока питания
ATX 24 pin Материнская плата
CPU 4 + 4 pin Процессор
PCI-E 6 + 2 pin Видеокарта, звуковая карта
SATA 15 pin Жёсткий диск
IDE (Molex) 4 pin Вентиляторы, старые дисководы и жёсткие диски
Floppy 4 pin Дисковод для дискет, встречаются всё реже

Принципы работы блоков питания и их основные узлы — ITC

Вентилятор

Часто его называют кулером на английский манер. В большинстве БП ставится вентилятор диаметром 120 мм. Он обеспечивает нужный уровень охлаждения микросхем и импульсных модулей или трансформаторов, обдувая их воздухом, всасываемым извне. В компактных адаптерах начального уровня применяют 80-мм кулеры. Иногда их приходится ставить два, чтобы достичь нужных параметров. В мощных блоках питания ставят один вентилятор от 135 до 140 мм. Вторым важным показателем является уровень производимого шума. Обычно чем больше крыльчатка, тем медленнее работает электромотор, понижая громкость при эксплуатации.

КПД

Этот параметр обозначает, насколько эффективно устройство расходует потребляемую энергию, а какой процент уходит просто на разогрев. Некоторые производители добровольно проходят процедуру сертификации, которая имеет название 80+. Уровни разнятся от нулевого до премиального Titanium, впрочем, Bronze — это уже хорошо.

Уровни сертификации 80 plus
Bronze Свидетельствует о том, что КПД по крайней мере не меньше 80 %
Silver Средние по стоимости БП с нормальным КПД
Gold Хороший показатель ставится на игровые БП мощностью от 500 Вт
Platinum Отличный уровень, устройство греется минимально, высокое качество выходного напряжения
Titanium Максимальный ранг, вентилятор включается в крайнем случае, для большинства задач хватает пассивного охлаждения

Чем отличается от трансформаторного блока питания

Блок-схемы трансформаторного и импульсного блоков питания

Как работает трансформаторный блок питания

В линейном блоке питания основное преобразование происходит при помощи трансформатора. Его первичная обмотка рассчитана под сетевое напряжение, вторичная обычно понижающая. В случае классического трансформатора переменного тока, предложенного П. Яблочковым, он преобразует синусоиду входного напряжения в такое же синусоидальное напряжение на выходе вторичной обмотки.

Следующий блок — выпрямитель, на котором синусоида сглаживается, превращается в пульсирующее напряжение. Этот блок выполнен на основе выпрямительных диодов. Диод может стоять один, может быть установлен диодный мост (мостовая схема). Разница между ними — в частоте импульсов, которые получаем на выходе. Дальше стоит стабилизатор и фильтр, придающие выходному напряжению нужный уровень и форму. На выходе имеем постоянное напряжение.

Самый простой линейный блок питания с двухполупериодным выпрямителем без стабилизации

Основной недостаток линейных источников питания — большие габариты. Они зависят от размеров трансформатора — чем выше требуется мощность, тем больше размеры блока питания. Нужен еще стабилизатор, который корректирует выходное напряжение, а это еще увеличивает габариты, снижает КПД. Зато это устройство не грозит помехами работающему рядом оборудованию.

Устройство импульсного блока питания и его принцип работы

В импульсном блоке питания преобразование сложнее. На входе стоит сетевой фильтр, задача которого не допустить в сеть высокочастотные колебания, вырабатываемые этим устройством. Они могут повлиять на работу рядом расположенных приборов. Сетевой фильтр в дешевых моделях стоит не всегда, и в этом зачастую кроется проблема с нестабильной работой каких-то устройств, которые мы часто списываем на «падение напряжения в сети».

Далее стоит сглаживающий фильтр, который выпрямляет синусоиду. Полученное на его выходе пилообразное напряжение подается на инвертор, преобразуется в импульсы, имеющие положительную и отрицательную полярность

Их параметры (частота и скважность) задаются при помощи блока управления. Частота обычно выбирается высокой — от 10 кГц до 50 кГц

Именно наличие этой ступени преобразования — генерации импульсов — и дало название этому типу преобразователей.

Блок-схема ИИП с формами напряжения в ключевых точках

Высокочастотные импульсы поступают на трансформатор, который является гальванической развязкой от сети. Трансформаторы эти небольшие, так как с возрастанием частоты сердечники нужны все меньше. Причем сердечник может быть набран из ферромагнитных пластин (в линейных БП должен быть из более дорогой электромагнитной стали).

На выходном выпрямителе биполярные импульсы превращаются в положительные, а выходной фильтр на их основе формирует постоянное напряжение. Основное достоинство ИБП в том, что существует обратная связь, которая позволяет регулировать работу устройства таким образом, чтобы напряжение на выходе было близко к идеалу. Это дает возможность получать стабильные параметры на выходе, независимо от того, что имеем на входе.

Достоинства и недостатки импульсных блоков питания

Для новичков не сразу становится понятным, почему лучше использовать импульсные выпрямители, а не линейные. Дело не только в габаритах и материалоемкости. Дело в более стабильных параметрах, которые выдают импульсные устройства. Качество напряжения на выходе не зависит от качества сетевого напряжения. Для наших сетей это актуально. Но не только это. Такое свойство позволяет использовать импульсный блок питания в сети разных стран. Ведь параметры сетевого напряжения в России, Англии и в некоторых странах Европы отличаются. Не кардинально, но отличается напряжение, частота. А зарядки работают в любой из них — практично и удобно.

Размер тоже имеет значение

Кроме того импульсники имеют высокий КПД — до 98%, что не может не радовать. Потери минимальны, в то время как в трансформаторных много энергии уходит на непродуктивный нагрев. Также ИБП меньше стоят, но при этом надежны. При небольших размерах позволяют получить широкий диапазон мощностей.

Но импульсный блок питания имеет серьезные недостатки. Первый — они создают высокочастотные помехи. Это заставляет ставить на входе сетевые фильтры. И даже они не всегда справляются с задачей. Именно поэтому некоторые устройства, особо требовательные к качеству электропитания, работают только от линейных БП. Второй недостаток — импульсный блок питания имеет ограничение по минимальной нагрузке. Если подключенное устройство обладает мощностью ниже этого предела, схема просто не будет работать.

Изготовление печатной платы

Подготовьте фольгированный текстолит, для этого обработайте металлический слой раствором соляной кислоты. Если такового нет, то можно использовать электролит, заливаемый в аккумуляторные батареи автомобилей. Эта процедура позволит обезжирить поверхность. Работайте в резиновых перчатках, чтобы исключить попадание растворов на кожу, ведь можно получить сильнейший ожог. После этого промойте водой с добавлением соды (можно мыла, чтобы нейтрализовать кислоту). И можно наносить рисунок печатной платы.

Сделать рисунок можно как с помощью специальной программы для компьютеров, так и вручную. Если вы изготовляете обычный блок питания 12В 2А, а не импульсный, то количество элементов минимально. Тогда при нанесении рисунка можно обойтись без программ для моделирования, достаточно нанести его на поверхность фольги перманентным маркером. Желательно сделать два-три слоя, дав предыдущему высохнуть. Неплохие результаты может дать применение лака (например, для ногтей). Правда, рисунок может выйти неровным из-за кисти.

Защита от неправильного использования

Когда выбирают лабораторный блок питания, в первую очередь обращают внимание на цену и максимальное значение напряжения и тока

Но наличие качественной защиты — это тоже очень важно, так как позволяет защитить не только блок питания, но и подлюченное к нему оборудование. В этом разделе мы расскажем о типах защит, которыми оснащаются серийные лабораторные блоки питания и рассмотрим несколько сопутствующих моментов

В этом разделе мы расскажем о типах защит, которыми оснащаются серийные лабораторные блоки питания и рассмотрим несколько сопутствующих моментов.

Защита от перегрузки по току (сокращённо OCP — Over Current Protection) должна мгновенно срабатывать при превышении выходным током заданного значения, что может произойти, например, при коротком замыкании выходных клемм блока питания. Такой тип защиты есть в большинстве хороших моделей

Но важно не только само наличие защиты, также важна скорость её срабатывания. В зависимости от реализации, защита от перегрузки по току может: полностью отключить выход блока питания от нагрузки, ограничить выходной ток заданным пороговым уровнем или перейти в режим стабилизации выходного тока (CC — Constant Current), сохранив то значение тока, которое было до перегрузки

В этом коротком видео показано как срабатывает защита маломощного лабораторного блока питания ITECH IT6720 при коротком замыкании его выходов.

Демонстрация срабатывания защиты от перегрузки по току при коротком замыкании.

Защита от перегрузки по напряжению (сокращённо OVP — Over Voltage Protection) срабатывает при превышении уровня напряжения на выходных клеммах блока питания заданного значения. Такая ситуация может возникать при работе на нагрузку с повышенным сопротивлением в режиме стабилизации тока. Или при попадании на клеммы лабораторного блока питания внешнего напряжения. Ещё одно применение этого типа защиты — это ограничение выходного напряжения блока питания на безопасном для подключенного оборудования уровне. Например, при питании цифровой схемы с напряжением 5 Вольт, есть смысл в настройках блока питания установить 5,5 Вольт в качестве порога срабатывания защиты.

Защита от перегрузки по мощности (сокращённо OPP — Over Power Protection) есть во всех моделях с . Задача этой защиты — ограничить максимальную мощность, которую лабораторный блок питания отдаёт в нагрузку, для того, чтобы силовые компоненты блока питания работали в штатном режиме и не перегревались. Если при работе в режиме стабилизации выходного напряжения (CV — Constant Voltage) будет превышен ток потребления, то прибор автоматически перейдёт в режим стабилизации выходного тока (CC — Constant Current) и начнёт снижать напряжение на нагрузке.

Защита от перегрева (сокращённо OTP — Over Temperature Protection) срабатывает при повышенном нагреве силовых компонентов блока питания, находящихся внутри корпуса. В простых моделях используется один датчик температуры, который просто впаян в плату управления. Он отслеживает среднюю температуру внутри корпуса и не способен быстро реагировать на опасный нагрев силовых элементов. В хороших моделях используется несколько датчиков, расположенных прямо в точках максимального выделения тепла. Такая реализация обеспечивает гарантированную защиту прибора, даже при быстром локальном перегреве. Обычно в хороших моделях защита от перегрева работает совместно с вентиляторами охлаждения с изменяемой частотой вращения. Чем больше тепла выделяется внутри прибора, тем выше скорость вращения вентиляторов. Если внутренняя температура всё-таки приблизится к критической, то будет выдано предупреждение (звуковое и надпись на экране), а если произойдёт превышение, то лабораторный блок питания автоматически выключится.

Также в лабораторных блоках питания встречаются такие виды защиты: от смены полярности (реверса), от пониженного напряжения (UVP — Under Voltage Protection) и от аварийного отключения.

Где 12 вольт, а где 5? Разбираемся с цветовой маркировкой

Как узнать, на каких проводах какие напряжения формируются? Где, к примеру, 12 вольт на блоке питания компьютера? Для этого не понадобится тестер, поскольку все провода, выходящие из компьютерного блока питания, имеют строго определенную общепринятую расцветку. Поэтому вместо тестера мы вооружаемся табличкой, приведенной ниже.

Расцветка и назначение проводов блока питания ATX

Цвет Назначение Примечание
черный GND провод общий минус
красный +5 В основная шина питания
желтый +12 В основная шина питания
синий -12 В основная шина питания (может отсутствовать)
оранжевый +3.3 В основная шина питания
белый -5 В основная шина питания
фиолетовый +5 VSB дежурное питание
серый Power good питание в норме
зеленый Power on команда запустить БП

Табличка особых пояснений не требует. С зеленым проводом (Power on) мы познакомились в предыдущем разделе – на него материнская плата подает сигнал низким уровнем (замыканием на общий) на включение БП. Синий провод в новых моделях БП может отсутствовать, поскольку производители материнских плат отказались от интерфейса RS-232C (COM-порт), требующего -12 В.

Фиолетовый провод (+5 VSB ) – это как раз дежурные +5 В, питающие дежурные узлы материнской платы. По серому проводу (Power good) блок питания сообщает, что все напряжения в норме и компьютер можно включать. Если какое-то из напряжений в процессе работы выходит за допустимые пределы или пропадает, то сигнал снимается. Причем это происходит до того, как успеют разрядиться накопительные конденсаторы БП, давая процессору время на принятие экстренных мер по аварийной остановке системы. Остальные провода – это провода питания материнской платы и периферийных устройств – дисководов, внешних видеокарт и т. д.

Как собрать простой блок питания

Собрать импульсный блок питания своими руками достаточно легко, если знать основные моменты. Данный блок питания будет обладать возможностью регулирования выходящего напряжения. Для реализации задумки понадобится:

  • Трансформатор понижающий;
  • Конденсатор электролический;
  • Мост диодный;
  • Потенциометр;
  • Два транзистора;
  • Сопротивления;
  • Вольтамперметр, цифровой.

В том случае, если подключение к зарядным аккумуляторам не предусмотрено схемой, диод вполне можно заменить на обыкновенную перемычку

Но если используется диод, обратите внимание, он должен выдерживать напряжение не менее 3А.

Общее описание

Слово «лабораторные» применяется неспроста, так как их главное предназначение – помогать в лабораториях. Они «живут» там постоянно и даже не транспортируются для проведения ремонта в посторонних помещениях. Специалисты не рекомендуют использовать устройство на открытом воздухе или в автомобиле. Лабораторные также подразумевают корректировку параметров и точную установку показателей.

Продукция российского производства имеет сертификаты соответствия, проходит регулярные поверки, что приводит к удорожанию ее использования. Данные БП могут допустить незначительную погрешность, отличаются надежностью и эффективностью работы, а также длительным сроком эксплуатации.

ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ

Лабораторный блок питания ни что иное как высококачественный универсальный источник питания с нормированными и термостабильными характеристиками. Эти устройства имеются на любом предприятии, которое занимается разработкой, изготовлением или ремонтом и/или ремонтом радиоэлектронной аппаратуры.

Используют их во время проверки и/или калибровки различных приборов. Кроме того они необходимы в тех случаях, когда нужно с высокой точностью подать питающее напряжение и ток на радиотехническое устройство.

Как правило, лабораторные блоки питания оснащаются всевозможными устройствами защиты (перегрузка, защита от короткого замыкания и пр.) и органами регулировки выходных параметров (напряжение и ток).

Лабораторные блоки оснащают также специальными входами для подачи модулирующих сигналов, что позволяет пользователю формировать выходное напряжение и ток произвольной формы.

Серийно выпускаемые лабораторные источники питания могут быть как линейными, так и импульсными.

Линейные.

Линейные лабораторные БП строятся на базе больших низкочастотных трансформаторов, которые понижают сетевое напряжение ~220 В частотой 50 Гц до определенного значения. Частота переменного тока при этом остается без изменений. Затем синусоидальное напряжение выпрямляется, сглаживается емкостными фильтрами и доводится до заданного значения линейным полупроводниковым стабилизатором.

Приборы, работающие по такому принципу обеспечивают требуемое значение выходного напряжения с высокой точностью. Оно отличается стабильностью и отсутствием пульсаций. Однако они имеют ряд недостатков:

  • большие габаритные размеры и вес, который может быть больше 20 кг. Из-за этого мощность на нагрузке у таких БП редко превышает 200 Вт.;
  • низкий КПД (не более 60%), что обусловлено принципом работы линейного стабилизатора, где все избыточное напряжение преобразуется в тепло;
  • наличие высокочастотных помех, проникающих из сети ~220 в, 50 Гц., для устранения которых необходим сетевой фильтр;
  • относительно небольшое время наработки на отказ, вызванное старением электролитических конденсаторов.

Импульсные.

В основу работы импульсных лабораторных блоков питания положен принцип заряда сглаживающих конденсаторов импульсным током. Он образуется в момент подключения/отключения индуктивного элемента. Переключение происходит под действием специально оптимизированных транзисторов, а выходное напряжение регулируется путем изменения глубины широтно импульсной модуляции (ШИМ).

Основные преимущества импульсных лабораторных источников обеспечиваются за счет:

  • плавного изменения глубины ШИМ, что в свою очередь, позволяет закачивать в сглаживающие конденсаторы такое количество энергии, которое соизмеримо с энергопотреблением нагрузки БП. При этом КПД блока питания может достигать 90 и более процентов;
  • высокочастотной составляющей, которая дает возможность использования сглаживающих конденсаторов значительно небольшой емкости.

За счет этого габаритные размеры корпуса невелики. Кроме того, за счет более высокого КПД значительно уменьшается выделение тепла и улучшается температурный режим работы источника питания.

Существенным недостатком импульсных лабораторных блоков, несколько ограничивающих их применение являются:

  • высокочастотные пульсации на выходе, которые достаточно тяжело отфильтровать;
  • радиочастотные наводки и их гармоники, вызванные периодическими токовыми импульсами.

При работе с радиочастотными схемами импульсные блоки питания необходимо располагать на максимальном расстоянии от них или использовать трансформаторные схемотехнические решения.

Основным техническим параметром лабораторных источников электро энергии является мощность. Здесь существует такое подразделение:

  • стандартные, мощностью до 700 Вт. Их максимальный вес не превышает 15 кг.;
  • большой мощности.

Стандартные исполнения могут быть как трансформаторными, так и импульсными. Предназначены они для работы с напряжениями в диапазоне от 15 до 150 В. При этом максимальный ток ограничивается величиной порядка 25 А. Как правило, они имеют от одного до трех каналов, из которых два являются регулируемыми.

2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Что нужно знать

Оптимальными являются параметры, при которых имеется возможность регулировать напряжение в пределах 0-30 В. В цепи будет установлен электронный ограничитель по силе тока. Он будет с высокой степенью эффективности осуществлять регулировку параметров в пределах от 0,002 А до 3 А максимум. Это позволяет получить комфортный и универсальный прибор с возможностью регулировки мощности.

ЛБП 0-15В/5A

Ампераж успешно ограничивается, обеспечивая рабочие параметры. За счет этого приборы-потребители, подключенные к самодельному прибору element 305d или из atx, будут в безопасности и не сгорят из-за перепадов значений.

Более подробно расположение всех составляющих демонстрирует потенциальная схема:

Схема расположения составляющих цепи

Она обладает такими рабочими параметрами:

  • Максимальный входной ток – 3 А.
  • Рабочее входное напряжение – 24 В (тип — переменный).
  • Выходной вольтаж – 0…30В.
  • Выходной ампераж – 0,002…2А.
  • Пульсация в пределах 0,01%.

К преимуществам можно отнести такие характеристики:

  • выходные параметры достаточно легко регулировать;
  • компактные габаритные параметры;
  • относительная простота изготовления;
  • несложная конструкция из подручных средств;
  • наличие нескольких степеней защиты, включая от ошибочного подключения;
  • наличие визуальной индексации.

ВИДЕО: Лабораторный блок питания из компьютерного АТХ

Композитор боевика «Агенты А.Н.К.Л.» напишет музыку…

Стабилизированный регулируемый блок питания с защитой от перегрузок

Множество радиолюбительских блоков питания (БП) выполнено на микросхемах КР142ЕН12, КР142ЕН22А, КР142ЕН24 и т.п. Нижний предел регулировки этих микросхем составляет 1,2…1,3 В, но иногда необходимо напряжение 0,5…1 В. Автор предлагает несколько технических решений БП на базе данных микросхем.

Интегральная микросхема (ИМС) КР142ЕН12А (рис.1) представляет собой регулируемый стабилизатор напряжения компенсационного типа в корпусе КТ-28-2, который позволяет питать устройства током до 1,5 А в диапазоне напряжений 1,2…37 В. Этот интегральный стабилизатор имеет термостабильную защиту по току и защиту выхода от короткого замыкания.

Рис.1. ИМС КР142ЕН12А

На основе ИМС КР142ЕН12А можно построить регулируемый блок питания, схема которого (без трансформатора и диодного моста) показана на рис.2. Выпрямленное входное напряжение подается с диодного моста на конденсатор С1. Транзистор VT2 и микросхема DA1 должны располагаться на радиаторе. Теплоотводящий фланец DA1 электрически соединен с выводом 2, поэтому если DA1 и транзистор VD2 расположены на одном радиаторе, то их нужно изолировать друг от друга. В авторском варианте DA1 установлена на отдельном небольшом радиаторе, который гальванически не связан с радиатором и транзистором VT2.

Рис.2. Регулируемый БП на ИМС КР142ЕН12А

Критерии выбора

Какой фирмы лучше купить, зависит от сферы использования инструмента. Популярные модели могут использоваться как радиолюбителями для выполнения ежедневных задач, так и при проведении высокоточных измерений и испытаний на промышленных предприятиях. Продукция используется там, где присутствует радиотехника и электроника, то есть повсеместно. Основные направления использования:

  1. Осуществление контроля за качеством элементов радиотехники.
  2. Проведение тестирования электронных агрегатов и схем.
  3. Тестирование контрольно-измерительных приборов.
  4. При производстве и последующем ремонте радиотехники.
  5. В процессе конструирования, проектирования и испытания аппаратуры радиоэлектронного вида.
  6. Применения как источника питания.
  7. Использование в учебном процессе при проведении лабораторных исследований.
  8. В период моделирования физических и электрических процессов.
  9. С целью эмуляции функционирования определенного оборудования.

В зависимости от возникшей необходимости и появляется вопрос, какой аппарат лучше купить и у какого производителя. Как выбрать, чтобы не ошибиться? Желательно предварительно изучить обзор предлагаемых моделей, ознакомиться с отзывами, уточнить в отношении выпускаемых новинок

По мнению покупателей, немаловажное значение имеет материал изготовления. От этого напрямую зависит срок службы прибора и его эффективность

Можно ознакомиться с рейтингом популярных моделей, как недорогих, так и по существенной стоимости.

Особенности выбора

В процессе выбора стоит обращать внимание та такие характеристики:

  • рабочие параметры;
  • размеры;
  • количество и мощность выходных каналов;
  • защитные функции или их отсутствие;
  • достоинства и недостатки;
  • средняя цена товара.

Чтобы устройство выполняло возложенные на него задачи, необходимо обратить особое внимание на технические характеристики:

  1. Нестабильный показатель в питающей сети, если происходит изменение переменного тока.
  2. Показатель шумности в процессе эксплуатации.
  3. Временной отрезок при переходе к начальным характеристикам при изменении тока потребителя.
  4. Качественность измеренных параметров и наличие погрешности.
  5. Разрешение – возможность выставления шага установки показателей на выходе.
  6. Управленческий интерфейс.
  7. Как компенсируются потери, если произвести подключение к четырехпроводной схеме, с целью управления элементами, осуществляющими регулировку выходного потока с использованием измерительных проводов, чтобы компенсировать потерю в питающей сети.

Есть и умельцы, которые в состоянии собрать ЛБП своими руками в домашних условиях. Главное – правильно выбрать схему. Самостоятельно можно изготовить простой линейный блок питания с регулировкой потоков от 1,3 до 30 В, с регулировкой от 0 до 5 А. Получится почти универсальное устройство, которое будет функционировать в режиме стабилизации. При возникновении необходимости можно запитать чувствительную схему или зарядить аккумулятор. Как сделать ту или иную операцию, подскажет пошаговая инструкция, изложенная в интернете.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации