Андрей Смирнов
Время чтения: ~22 мин.
Просмотров: 0

Блок питания своими руками

Мощность блока питания

Несомненно, мощность блока питания — важнейшая характеристика данного устройства. Сегодня можно встретить блок питания от 300 Вт до 1800 Вт

И очень важно купить блок бесперебойного питания с такой мощностью, которая действительно сможет удовлетворить все потребности вашего ПК. Недостаточная мощность приведёт к различным неполадкам компьютерных комплектующих, а излишняя — к зря потраченным деньгам и потреблению лишней энергии

Как же определить нужную мне мощность? Можно произвести нехитрый расчёт мощности блока питания. Запоминаем начальные значение в 100 Вт, а дальше прибавляем к нему 50 Вт за каждый жёсткий диск HDD, гигабайт оперативной памяти и оптический привод. А вот за процессор и видеокарту приплюсовывать надо от 50 до 100 ватт в зависимости от потребности данных устройств. В итоге для большинства офисных и домашних компьютеров средних возможностей достаточно купить блок питания 350 — 450 Вт. Для более мощных ПК эти цифры растут пропорционально приведённой выше схеме.

Где купить блок питания?

Какие виды закалок бывают

Монтажные единицы

Форм-факторы серверного оборудования имеют серьезные отличия только при нестандартной размерной сетке. В основном для измерения используют монтажные единицы или юниты. Нестандартные размеры могут иметь единицы техники следующих форм-факторов: mini-tower, tower и разнообразные самосборы.

Теперь подробнее расскажем о монтажных единицах. U (аббр. Unit) — единица, предназначенная для измерения высоты оборудования, в том числе и серверного. Введено сие обозначение для удобства и приведения инфраструктуры к типовому виду. Соответственно, размеры серверных стоек, телекоммуникационных шкафов и других мест для размещения серверов приведены к данной величине. Теперь давайте рассмотрим стандартную размерную сетку в стиле стандарт/сервер. После стандартной величины, буду указывать соответственно типовую высоту серверного оборудования:

  1. 1U (1 юнит). 44,45 мм (1,75 дюймов)/43,7 мм (1,719 дюймов).

  2. 2U (2 юнита). 88,90 мм (3,5 дюймов)/88,15 мм (3,469 дюймов).

  3. 3U (3 юнита). 133,35 мм (5,25 дюймов)/132,6 мм (5,219 дюймов).

  4. 4U (4 юнита) 177,8 мм. (7 дюймов)/177,05 мм (6,969 дюймов).

  5. 7U (7 юнитов). 311,15 мм (12,25 дюймов)/310,4 мм (12,219 дюймов).

  6. 10U. 444,5 мм (17,5 дюймов)/443,75 мм (17,469 дюймов).

Учтите, зазор не меняется. Он всегда составляет 0, 75 миллиметра или 0,031 дйюма. По сути формула вычисления высоты сервера проста. 1U=1U, 2U=1*2U, 3U=3*1U и далее просто вычитаете зазор из полученного числа. Конечно же, подобный подход к инфраструктуре позволяет заметно упростить проектирование места для размещения серверного оборудования, ведь размеры будут известны заранее.

А теперь пройдемся по оборудованию. Для наглядности выкладываю размерную сетку в виде фотографий.

Сервер с форм-фактором 1U

Форм-фактор 1U — стандарт в инфраструктуре. Но редко встречается момент, когда такое устройств будет обладать большой производительностью. Все довольно просто, для размещения мощных процессоров, системы охлаждения или видеокарт попросту не хватает места. Так что, придется чем-то жертвовать ради компактности.

Сервер с форм-фактором 2U

Форм-фактор 2U встречается в сферах, где нужно умеренное количество накопителей, процессор помощнее или парочка профессиональных видеокарт в корпусе. Очень популярный вариант.

Сервер с форм-фактором 3U

3U — не самый распространенный тип, но периодически встречается. Нужно много накопителей, топовые процессоры и 4-6 GPU в корпус? Тогда сей вариант — ваш.

Сервер с форм-фактором 4U

Сами видите, больше накопителей, да и других компонентов можно разместить гораздо больше, ведь места прибавилось.

Сервер с форм-фактором 5U

Довольно редкий вариант, но тоже периодически попадается.

Сервер с форм-фактором 7U

А как вам вариант побольше? Частенько такой форм-фактор имеет шасси блей-серверов. Но иногда бывают единые системы с таким типажом.

Сервер с форм-фактором 10U

А вот вам форм-фактор 10U. Этот блейд-сервер рассчитан на установку профессиональных видеокарт в модули, так что места занимает много.

Нюансы с форм-фактором сервера

Иногда встречаются нестандартные тип, предназначенные не для размещения в стойку или телекоммуникационный шкаф, а для каких-нибудь другим мест. И многие перечисленные далее форм-факторы довольно популярны и встречаются повсеместно.

Tower

Часто форм-фактор Tower соответствует стандартным 4U, иногда 5U. Предназначен для напольного, ну или настольного размещения. Некоторые типы могут подходить для установки в стойку. Тип 4U/Tower довольно распространен. В принципе, внешне похож на привычный персональный компьютер.

Mini-Tower

Могут иметь размеры от 1/2U до маленько коробочки, спокойно помещающейся в руке. Применяются повсеместно, особенно в тех сферах, где важнее компактность, чем производительность и метод размещения. Удобно переносить, перевозить и разворачивать на объектах, удаленных от офиса.

Блейд-серверы

Сравнительно небольшие серверы, которые имеют размер 1/4U, 1/2U. Компоненты размещены максимально плотно, чтобы экономить место. Все лишнее: системы охлаждения, блоки питания, сетевые интерфейсы и прочее вынесено во вне. Такие серверы размещаются в шасси, которое может иметь любой форм-фактор, но, как правило, это 4U, 7U и 10U.

Индивидуальные

Как правило самосборы, некоторые китайские модели. Собственно, сделаны только под какую-то задачу, инфраструктуру затачивать придется под них, а не формировать на основании типовых размерных сеток. В современном мире встречаются редко, но иногда проскакивают.

Импульсный источник питания

Его достоинства – эффективность и компактность. Даже при высоких токах и мощности импульсный блок обходится без громоздкого понижающего трансформатора.

Как сделать импульсный блок питания, разберём на примере микросхемы UC3842. Сетевое напряжение 220В поступает на ключ VT, проходя выпрямитель (CB), конденсатор фильтра (Сф) и обмотку трансформатора.

Пониженное напряжение через сопротивление R3 выходит на вывод 7 для включения схемы. После запуска туда же происходит поступление питания с обмотки трансформатора.

Внутри чипа можно увидеть генератор и широтно-импульсный модулятор, позволяющий управлять работой мощного ключа, который выполнен на транзисторе. Поступление сигнала обратной связи происходит на выход 3.

В Интернете возможно отыскать практическую схему источника питания импульсного типа на основе чипа UC3842.

Стоит запомнить: для работы современных подобных импульсных устройств требуется колебание сетевого напряжения от 110 до 240В.

Особенности закалки стали

Как уже говорилось ранее, закалка является одним из видов термообработки металлов. Она подразумевает нагрев температуры тела до такой степени, что становится доступным изменение его кристаллической решетки. После такой обработки нож или другой объект из металла становится несколько тверже и прочнее, плюс к этому полностью теряется его пластичность до следующей закалки.

Также существует понятие отпуска. Это другой вид термообработки, с помощью которого понижается напряжение металла, которое он приобретает в процессе закалки.

Стоит знать, что закалка производится исключительно над нержавеющими стальными телами, а также сплавами, из которых они изготавливаются. Благодаря своей структуре изделие обладает высоким показателем твердости, который влияет на его хрупкость. При правильной термообработке, а также последующем быстром отпуске можно снизить хрупкость объекта и позволить его использование во множестве сфер.

Определение качества работы

⇡#Методика тестирования блоков питания

Одним из основных параметров БП является стабильность напряжений, которая находит отражение в т.н. кросс-нагрузочной характеристике. КНХ представляет собой диаграмму, в которой на одной оси отложен ток или мощность на шине 12 В, а на другой – совокупный ток или мощность на шинах 3,3 и 5 В. В точках пересечения при разных значениях обеих переменных определяется отклонение напряжения от номинала на той или иной шине. Соответственно, мы публикуем две разные КНХ – для шины 12 В и для шины 5/3,3 В.

Цвет точки означает процент отклонения:

  • зеленый: ≤ 1%;
  • салатовый: ≤ 2%;
  • желтый: ≤ 3%;
  • оранжевый: ≤ 4%;
  • красный: ≤ 5%.
  • белый: > 5% (не допускается стандартом ATX).

Пример отличной КНХ (Corsair HX750i)

Посредственная КНХ (Antec VP700P)

Для получения КНХ используется сделанный на заказ стенд для тестирования блоков питания, который создает нагрузку за счет рассеивания тепла на мощных полевых транзисторах.

Стенд для тестирования БП

Другой не менее важный тест – определение размаха пульсаций на выходе БП. Стандарт ATX допускает пульсации в пределах 120 мВ для шины 12 В и 50 мВ – для шины 5 В. Различают высокочастотные пульсации (на удвоенной частоте ключа основного преобразователя) и низкочастотные (на удвоенной частоте питающей сети).

Этот параметр мы измеряем при помощи USB-осциллографа Hantek DSO-6022BE при максимальной нагрузке на БП, заданной спецификациями. На осциллограмме ниже зеленый график соответствует шине 12 В, желтый – 5 В. Видно, что пульсации находятся в пределах нормы, и даже с запасом.

Высокочастотные пульсации: хороший результат (AeroCool KCAS-650M)

Низкочастотные пульсации: хороший результат (AeroCool KCAS-650M)

Для сравнения приводим картину пульсаций на выходе БП старого компьютера. Этот блок изначально не был выдающимся, но явно не стал лучше от времени

Судя по размаху низкочастотных пульсаций (обратите внимание, что деление развертки напряжения увеличено до 50 мВ, чтобы колебания поместились на экран), сглаживающий конденсатор на входе уже пришел в негодность. Высокочастотные пульсации на шине 5 В находятся на грани допустимых 50 мВ

Высокочастотные пульсации: на грани допустимого (старый БП)

Низкочастотные пульсации: ужасно (старый БП)

В следующем тесте определяется КПД блока при нагрузке от 10 до 100% от номинальной мощности (путем сравнения мощности на выходе с мощностью на входе, измеренной при помощи бытового ваттметра). Для сравнения на графике приводятся критерии различных категорий 80 PLUS. Впрочем, большого интереса в наши дни это не вызывает. На графике приведены результаты топового БП Corsair в сравнении с весьма дешевым Antec, а разница не то чтобы очень велика.

График КПД

Более насущный для пользователя вопрос – шум от встроенного вентилятора. Непосредственно измерить его вблизи от ревущего стенда для тестирования БП невозможно, поэтому мы измеряем скорость вращения крыльчатки лазерным тахометром – также при мощности от 10 до 100%. На нижеприведенном графике видно, что при низкой нагрузке на этот БП 135-миллиметровый вентилятор сохраняет низкие обороты и вряд ли слышен вообще. При максимальной нагрузке шум уже можно различить, но уровень все еще вполне приемлемый.

График скорости вращения вентилятора (AeroCool KCAS-650M)

Как Проверить Якорь На Генераторе

Лучшие дешёвые блоки питания до 1000 рублей

Если руководствоваться мнением опытного специалиста по компьютерному hardware, то он скажет: блок питания не стоит покупать ни в коем случае. И в чём-то он будет прав: нужное качество стартует от определённой цены. Однако на практике для очень многих простых пользователей решающим фактором является цена. Купить подешевле, а там сколько отпущено, столько и прослужит. Поэтому бюджетный сегмент комплектующих будет востребован всегда, даже при невысоком качестве товара. Тем не менее, даже в дешёвой ценовой категории можно найти устройства, которые смогут работать более-менее надёжно и продуктивно. Правда, большой мощности от них ожидать не стоит.

5. ExeGate ATX-XP450 450W

Фирма «Экзегейт» прочно обосновалась в самом низу ценовых категорий блоков питания. Примерно половина всех дешёвых блоков питания выпускаются ей. Совсем дешёвые устройства можно найти и за 600 рублей, а за 800-900 они будут даже оформлены наподобие дорогих. 450-ваттная версия будет вполне достаточна для питания стандартного компьютера со слабой видеокартой. Также благодаря низкой цене его можно приобретать на замену в старые машины, которые ещё годятся для работы. Однако большой нагрузки он не выдержит.

ExeGate ATX-XP450 450W

Характеристики:

  • форм-фактор ATX;
  • мощность 450 Вт;
  • кулер охлаждения 12 см.

Плюсы

  • низкая цена;
  • достаточная мощность;
  • распространённый форм-фактор;
  • разъём под мат-плату подходит к старым и новым устройствам.

Минусы

  • низкая надёжность;
  • высок процент заводского брака.

Блок питания ExeGate ATX-XP450 450W

4. STM STM-40SH 400W

Простой и компактный блок питания с 80-миллиметровым вентилятором. Из-за небольшого диаметра такому кулеру приходится вращаться более интенсивно, а значит, создавать больший шум. Впрочем, шумность — отличительная черта всех дешёвых выпрямителей. 400 Вт рабочей мощности не создадут критического перегрева в модуле.

STM STM-40SH 400W

Характеристики:

  • форм-фактор: ATX;
  • мощность 400 Вт;
  • кулер охлаждения 80 мм.

Плюсы

  • компактный;
  • недорогой;
  • средняя мощность.

Минусы

  • шумный;
  • выдаёт мощность ниже заявленной.

Блок питания STM STM-40SH 400W

3. ACCORD ACC-450-12 450W

Те, кому нужно недорогое надёжное решение для систем умеренной производительности, могут смело брать этот аппарат и устанавливать в свой десктоп. Простейшее исполнение здесь скоре плюс, чем минус. А вот длинные соединительные кабеля позволяют запитать комплектующие практически в любой части без переходников и удлинителей. Шумность кулера и его возможная поломка года через два всё равно не перевешивают приятную цену.

ACCORD ACC-450-12 450W

Характеристики:

  • форм-фактор: ATX;
  • мощность 450 Вт;
  • кулер охлаждения 120 мм.

Плюсы

  • надёжная работа;
  • длинные кабеля с разъёмами;
  • доступная цена;
  • простая конструкция.

Минусы

  • шум при работе;
  • необходимость периодического обслуживания кулера.

Блок питания ACCORD ACC-450-12 450W

2. CROWN MICRO CM-PS400 Standart 400W

Crown Micro — ещё один китайский бренд, выпускающий бюджетные блоки питания для нетребовательных пользователей. Продукция отличается долгим сроком службы, если при сборке не был допущен брак — тогда остаётся только замена. Впрочем, попытать счастья за такие деньги вполне оправдано. Из достоинств — поддержка даже более мощных, чем офисные, систем, минус — большой шум маленького кулера, который пытается охладить разогревшуюся начинку.

CROWN MICRO CM-PS400 Standart 400W

Характеристики:

  • форм-фактор: ATX;
  • мощность 400 Вт;
  • кулер охлаждения 80 мм.

Плюсы

  • надёжная работа;
  • запас выдаваемой мощности;
  • комплектующие не сгорают — только сам блок.

Минусы

сильно шумит.

Блок питания CROWN MICRO CM-PS400 Standart 400W

1. CROWN MICRO CM-PS450 450W

Один из лучших вариантов до 1000 рублей. Простой, надёжный, попадаются модификации в стильном корпусе цвета охры и тканевой оплёткой проводов. Мощность, как и во всех бюджетных блоках, не дотягивает до заявленной, что, впрочем, не мешает аппарату тянуть современные офисные или игровые системы 3 — 5-летней давности. Качество пайки не слишком высокое, но за такую цену даже отработка гарантийного срока уже окупает изделие.

CROWN MICRO CM-PS450 450W

Характеристики:

  • форм-фактор: ATX;
  • мощность 450 Вт;
  • кулер охлаждения 120 мм.

Плюсы

  • относительно тихая работа;
  • долгая служба при отсутствии заводского брака;
  • приятная цена;
  • наличие защиты от скачка электросети и повышенного отбора мощности.

Минусы

  • неаккуратная пайка;
  • завышенные паспортные параметры.

Блок питания CROWN MICRO CM-PS450 450W

Немного теории

Но прежде чем мы начнем копаться во внутренностях, давайте зададимся вопросом, действительно ли блок питания настолько необходим? Почему нельзя подключить компьютер напрямую к розетке? Ответ заключается в том, что компьютерные комплектующие рассчитаны на совсем другое напряжение, нежели сетевое.

На графике ниже показано, каким должно быть электричество сети (в США = синяя и зеленая кривые; Великобритания = красная кривая). Ось X представляет время в миллисекундах, а ось Y – напряжение (voltage) в вольтах. Проще всего понять, что такое напряжение, глядя на разность энергий между двумя точками.

Если напряжение приложено к проводнику (например, к металлической проволоке), разница в энергии заставит электроны в материале проводника течь от более высокого энергетического уровня к более низкому. Электроны – составляющие атомов, из которых состоит проводник, и металлы имеют много электронов, которые могут свободно перемещаться. Этот поток электронов называется током (current) и измеряется в амперах.

Хорошую аналогию можно провести с садовым шлангом: напряжение сродни давлению, которое вы используете, а расход воды – это ток. Любые ограничения и препятствия в шланге – по сути как электрическое сопротивление.

Мы видим, что электричество в сети варьируется с течением времени, из-за чего оно называется напряжением переменного тока (AC, alternating current). В США сетевое напряжение меняется 60 раз в секунду, достигая пиковых значений 340 В или 170 В, в зависимости от местоположения и способа подключения. В Великобритании пиковые напряжения пониже, и частота этих колебаний также немного отличается. Большинство стран придерживаются схожих стандартов сетевого напряжения, и лишь в немногих странах пиковые напряжения более низкие или более высокие.

Потребность в блоке питания заключается в том, что компьютеры не работают с переменным током: им нужно постоянное напряжение, которое никогда не меняется, и кроме того – гораздо более низкое. На том же графике оно будет выглядеть примерно вот таким:

Но современному компьютеру требуется не одно постоянное напряжение, а четыре: +12 вольт, -12 вольт, +5 вольт и +3,3 вольта. И поскольку эти значения не меняются, такой ток называется постоянным (DC, direct current). Преобразование тока из переменного в постоянный (т.н. выпрямление) – одна из основных функций блока питания. Пришло время вскрыть его и посмотреть, как он это делает!

Преобразование тока из переменного в постоянный – одна из основных функций PSU. Пришло время посмотреть, как он это делает!

Здесь мы должны предупредить вас, что в блоке питания есть элементы, накапливающие электричество, в том числе смертельное. Поэтому разбирать PSU потенциально опасно.

Официальное фото блока питания Cooler Master.

Принцип работы этого блока питания аналогичен многим другим, и хоть маркировки на различных деталях внутри будут отличаться, принципиальных различий это не делает.

Разъём сетевого шнура находится в верхнем левом углу фотографии, и ток по сути идет по часовой стрелке, пока не достигнет выхода из блока питания (пучок цветных проводов, нижний левый угол).

Источник фото techspot.com

Если мы перевернем плату, мы увидим, что по сравнению с материнской платой, проводники и соединения на ней более широкие и массивные – это потому, что они рассчитаны на более высокие токи. Также, бросается в глаза широкая полоса в середине, будто текущая по равнине река.

Это снова говорит о том, что все блоки питания имеют два четко разделённых узла: первичный и вторичный. Первый – это настройка входного напряжения, чтобы его можно было эффективно понижать; второй – это все настройки уже выпрямленного и пониженного напряжения.

Ginzzu CB600 600W

Подключение блока питания

Для удобства процесс подключения нового блока питания мы также поделили на несколько этапов.

Обращаем ваше внимание на то, что мощность блока питания должна обеспечивать полноценное питание вашего компьютера. Если вы подключите маломощный блок, компьютер может работать очень медленно или вовсе отказаться запускаться

Если вы еще не выбрали блок питания, на нашем сайте прежде уже рассказывалось, каким образом необходимо сделать правильный выбор, рассчитав правильную мощность.

Шаг 1: открытие корпуса системного блока

Если корпус системного блока закрыт – вам потребуется получить доступ к его внутренностям, сняв боковую стенку. Как только данная задача будет выполнена, положите системный блок на блок – так будет намного проще выполнить установку блока питания.

Шаг 2: снятие кулера и процессора

Часто, чтобы установить блок питания, вам необходимо освободить достаточное место, на время изъяв некоторые устройства. Как правило, в большинстве случаев пользователям требуется достать кулер и процессор, но поскольку внутреннее устройство системного блока может быть совершенно иным, данная процедура может и не потребоваться.

Шаг 3: установка нового блока питания

Вставьте блок питания в корпус системного блока. Для удобства во многие корпуса встроены специальные полозья, с помощью которых блок питания может удобно «въехать» в свое гнездо.

Прежде чем прикручивать блок питания к корпусу, обязательно убедитесь в том, что доступ к вентилятору ничем не заблокирован, а сам блок питания четко совмещается со всеми винтами на корпусе. Прикрутите его винтами со внешней и внутренней части корпуса.

Шаг 4: подключение разъемов

Теперь, когда блок питания установлен в компьютер, можно заниматься подключением силовых кабелей к материнской плате. Если у вас было сделано фото по совету выше, используйте его, чтобы знать, какой кабель куда подключается.

Как правило, подключение кабелей выполняется в следующем порядке:

  • Подключение 20- или 24-контактного разъема к материнской плате. Начинаем с самого большого кабеля. Не забывайте, что этот кабель крепится к разъему ключом, поэтому не забудьте его повернуть.

Подключение питания 12В к материнской плате. Данный разъем на старых компьютерах имеет 4 контакта, а в новых – целых 8. Данный кабель отвечает за питание процессора и, как правило, на нем четко обозначается, чем он является – запутаться вы не должны.

Подключение видеокарты. В этом случае может задействоваться как один кабель, так и сразу несколько. Как правило, они имеют 6 или 8 контактов, и обозначаются как PCI-E.

Подключение жесткого диска. SATA-кабель это небольшой кабель с плоским разъемом, который отвечает за работу жесткого диска. Как правило, SATA-разъем имеет черный цвет, так что перепутать вы не должны.

Подключение дисковода. Если в вашем компьютере имеется дисковод, соответствующий разъем необходимо к нему подключить.

Подключив все кабели, обязательно проверьте, чтобы они не мешали другим устройствам компьютера, например, кабель не прикасался к кулеру. Все неиспользованные кабели рекомендуется скрепить стяжкой и аккуратно убрать в сторону, чтобы они не болтались по всему корпусу.

Шаг 5: сборка компьютера

Установите на место стенку системного блока, а затем переверните его в вертикальное положение. Подключите все кабели компьютера к сети. Если на блоке питания имеется переключатель, убедитесь, что он установлен в активное положение.

Собственно, на этом работа по подключению блока питания завершена. С этого момента компьютер можно включать. Как вы могли убедиться, процесс действительно несложный, главное, подходить к работе очень внимательно, и даже не зная, какой кабель за что отвечает, вы легко все сможете установить в нужные гнезда.

⇡#Общая схема блока питания стандарта ATX

БП настольного компьютера представляет собой импульсный источник питания, на вход которого подается напряжение бытовой электросети с параметрами 110/230 В, 50-60 Гц, а на выходе есть ряд линий постоянного тока, основные из которых имеют номинал 12, 5 и 3,3 В. Помимо этого, БП обеспечивает напряжение -12 В, а когда-то еще и напряжение -5 В, необходимое для шины ISA. Но последнее в какой-то момент было исключено из стандарта ATX в связи с прекращением поддержки самой ISA.

Блок-схема импульсного БП

На упрощенной схеме стандартного импульсного БП, представленной выше, можно выделить четыре основных этапа. В таком же порядке мы рассматриваем компоненты блоков питания в обзорах, а именно:

  1. фильтр ЭМП – электромагнитных помех (RFI filter);
  2. первичная цепь – входной выпрямитель (rectifier), ключевые транзисторы (switcher), создающие переменный ток высокой частоты на первичной обмотке трансформатора;
  3. основной трансформатор;
  4. вторичная цепь – выпрямители тока со вторичной обмотки трансформатора (rectifiers), сглаживающие фильтры на выходе (filtering).

Внутреннее устройство БП (AeroCool KCAS-650M)

Полная схема простого блока питания стандарта ATX

Принципиальная схема блока питания.

Включается блок питания в розетку при помощи двухполюсной вилки ХР1. При включении выключателя SA1 напряжение 220В подается на первичную обмотку (I) понижающего трансформатора Т1.

Трансформатор Т1 понижает сетевое напряжение до 1417 Вольт. Это напряжение, снимаемое со вторичной обмотки (II) трансформатора, выпрямляется диодами VD1VD4, включенными по мостовой схеме, и сглаживается фильтрующим конденсатором С1. Если не будет конденсатора, то при питании приемника или усилителя в динамиках будет слышен фон переменного тока.

Диоды VD1VD4 и конденсатор С1 образуют выпрямитель, с выхода которого постоянное напряжение поступает на вход стабилизатора напряжения, состоящего из нескольких цепей:

1. R1, VD5, VT1;
2. R2, VD6, R3;
3. VT2, VT3, R4.

Резистор R2 и стабилитрон VD6 образуют параметрический стабилизатор и стабилизируют напряжение на переменном резисторе R3, который включен параллельно стабилитрону. С помощью этого резистора устанавливают напряжение на выходе блока питания.

На переменном резисторе R3 поддерживается постоянное напряжение, равное напряжению стабилизации Uст данного стабилитрона.

Когда движок переменного резистора находится в крайнем нижнем (по схеме) положении, транзистор VT2 закрыт, так как напряжение на его базе (относительно эмиттера) равно нулю, соответственно, и мощный транзистор VT3 тоже закрыт.

При закрытом транзисторе VT3 сопротивление его перехода коллектор-эмиттер достигает нескольких десятков мегаом, и практически все напряжение выпрямителя падает на этом переходе. Поэтому на выходе блока питания (зажимы ХТ1 и ХТ2) напряжения не будет.

Когда же транзистор VT3 открыт, и сопротивление перехода коллектор-эмиттер составляет всего несколько Ом, то практически все напряжение выпрямителя поступает на выход блока питания.

Так вот. По мере перемещения движка переменного резистора вверх, на базу транзистора VT2 будет поступать отпирающее отрицательное напряжение, и в его эмиттерной цепи (БЭ) потечет ток. Одновременно, напряжение с его нагрузочного резистора R4 подается непосредственно на базу мощного транзистора VT3, и на выходе блока питания появится напряжение.

Чем больше отрицательное отпирающее напряжение на базе транзистора VT2, тем больше открываются оба транзистора, тем большее напряжение на выходе блока питания.

Наибольшее напряжение на выходе блока питания будет почти равно напряжению стабилизации Uст стабилитрона VD6.

Резистор R5 имитирует нагрузку блока питания, когда к зажимам ХТ1 и ХТ2 ничего не подключено. Для контроля выходного напряжения предусмотрен вольтметр, составленный из миллиамперметра и добавочного резистора R6.

На транзисторе VT1, диоде VD5 и резисторе R1 собран узел защиты от короткого замыкания между гнездами ХТ1 и ХТ2. Резистор R1 и прямое сопротивление диода VD5 образуют делитель напряжения, к которому своей базой подключен транзистор VT1. В рабочем состоянии транзистор VT1 закрыт положительным (относительно эмиттера) напряжением смещения на его базе.

При коротком замыкании на выходе блока питания эмиттер транзистора VT1 окажется соединенным с анодом диода VD5, и на его базе (относительно эмиттера) появится отрицательное напряжение смещения (падение напряжения на диоде VD5). Транзистор VT1 откроется, и участком коллектор-эмиттер зашунтирует стабилитрон VD6. В результате этого транзисторы VT2 и VT3 окажутся закрытыми. Сопротивление участка коллектор-эмиттер регулирующего транзистора VT3 резко возрастет, напряжение на выходе блока питания упадет почти до нуля, и через цепь короткого замыкания потечет настолько малый ток, что он не причинит вреда деталям блока. Как только короткое замыкание будет устранено, транзистор VT1 закроется и напряжение на выходе блока восстановится.

Распиновка разъёмов компьютерного блока питания

Что такое блок питания и как он работает?

Стандартный источники питания работает от 220В, а также может иметь механический переключатель входного напряжения 110В или 220В AC (переменный ток). Компьютерный блок питания предназначен для преобразования переменного натяжения 220 вольт DC в постоянный ток +12 вольт, +5вольт, +3.3вольт, затем постоянный ток идет на питания компонентов компьютера. 3.3 и 5 вольт обычно используются в цифровых схем, а 12 вольт используется для запуска двигателей дисковода и на вентиляторы.

АТХ 20 и 24 Контактный главный Разъем кабеля питания

24-контактный 12-вольтовый разъем питания ATX может быть подключен только в одном направление в слот материнской плате. Если вы внимательно посмотрите на изображение в верхней части этой страницы, вы увидите, что контакты имеют уникальную форму, которая соответствует только одному направлению на материнской плате. Исходный стандарт ATX поддерживал 20-контактный разъем с очень похожей распиновкой, что и 24-контактный разъем, но выводы 11, 12, 23 и 24 пропущен. Это означает, что более новый 24-контактный источник питания полезен для системных плат, требующих больше мощности. На современных материнских платах может стоять всего 2 типа разъёма 20-контактный основной разъем питания или 24-контактный основной разъем питания.

 Многие источники питания поставляются с 20+4 контактными фишками, который совместим с 20 и 24-контактами слотов питания материнских плат. В 20+4 кабель питания состоит из двух частей: 20-контактной, и 4-контактной фишки. Если вы разъедините две части отдельно, тогда можно подключить 20-контактный разъем, а если вы соедините две фишки 20+4 кабеля питания вместе, то у вас получится 24-контактный кабель питания, который может быть подключен к 24-контактному слоту питания материнской платы.

Molex 4-Контактный периферийный разъем кабеля питания

Четырех контактный периферийный силовой кабель. Он был использован для флоппи-дисков и жестких дисков и до сих пор очень широко используется. Вам не придется беспокоиться об установке это разъема, его нельзя установить неправильна. Люди часто используют термин «4-контактный Molex кабель питания» или «4-контактный Molex» для обозначения.

8-Контактный EPS и +12 Вольт Разъем питания

Этот кабель изначально создавалась для рабочих станций для обеспечения 12 вольт многократного питания. Но так как времени прошло много процессоры требуют больше питания и 8-контактный кабель часто используется вместо 4-контактный 12 вольт кабель. Его часто называют «ЕРЅ12В» кабель.

4+4 Контактный EPS +12 Вольт Разъем питания

Материнские платы может быть с 4-контактный разъем или 8-контактный разъем 12 вольт. Многие источники питания оснащены 4+4-контактный 12 вольт кабель, который совместим с 4 и 8 контактами материки. А 4+4 кабель питания имеет два отдельных штыря 4 штук. Если вы соедините их вместе, 4+4 кабель питания, то у вас будет 8-контактный кабель питания, который может быть подключен к 8-контактный разъем. Если вы оставите две части отдельно, тогда вы можете подключить один из штекеров 4-контактный разъем материнской платы.

6-контактный разъем PCI Express (PCIe) силовой кабель Разъем

Этот кабель используется для предоставления дополнительных 12 вольт питания для PCI Express карты расширения.  Этот разъем может обеспечить до 75 Вт питания PCI Express.

8-контактный разъем PCI Express (PCIe) силовой кабель разъем

Спецификации PCI Express версии 2.0 выпущена в январе 2007 года добавлена 8 контактный PCI Express с кабелем питания. Это просто 8-контактный версия 6-Контактный PCI Express с кабелем питания. Оба используются в основном для обеспечения дополнительного питания видеокарты. Старший 6-контактный версия официально предоставляет не более 75 Вт (хотя неофициально это, как правило, может дать значительно больше), а новый 8-контактный вариант обеспечивает максимум 150 Вт.

6+2(8) пин PCI Express (PCIe) силовой кабель разъем

Некоторые видеокарты имеют 6-контактный PCI Express с разъемами питания и другие 8-Контактный разъемы PCI Express. Многие источники питания поставляются с 6+2 PCI Экспресс силовой кабель, который совместим с обоими типами видеокарт. В 6+2 PCI Express силовой кабель состоит из двух частей: 6-контактный, а 2-штекерн. Если вы сложите вместе эти две части, то у вас будет полноценный 8-контактный PCI-Express разъем. Но если вы разделите разъём на две части, то вы можете подключить только 6-контактный.

Блок питания с регулируемым напряжением

Как сделать регулированный блок питания, используя готовый блок от струйного принтера? Вначале уточним характеристики последнего. У нашего устройства 24В и 0,7А.

По мощности он подходит для подключения электрических инструментов типа дрели, а по напряжению – нет. Как это исправить? Простейшее решение – замкнуть полюс со средним выходом. В результате получаем нужные нам 24В.

Более сложный вариант требует разборки блока. Зато он позволит осуществлять регулировку напряжения от 10В и выше.

Как сделать регулируемый блок питания? Это просто. Данный транзистор убираем и заменяем резистор r57 на регулируемый на 3,3 кОм. Если не нашли такой резистор, подойдут аналоги на 4,7 – 10 кОм.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации