Андрей Смирнов
Время чтения: ~20 мин.
Просмотров: 0

Разница между соляной кислотой и серной кислотой

Характеристика и свойства H2SO4

Серная кислота – это одна из наиболее сильно действующих минеральных кислот. Она представляет собой маслянистую, тяжелую и бесцветную жидкость с необыкновенно сильными гигроскопическими свойствами. В своей концентрированной форме обладает также сильными окислительными свойствами. Серная кислота очень хорошо растворяется в воде во всех соотношениях, выделяя большое количество тепла. Именно поэтому необходимо помнить о том, чтобы наливать кислоту в воду, а не наоборот. Возможно изготовление серной кислоты даже с концентрацией 99%, однако, потери оксида серы при температуре близкой к температуре кипения приводят к образованию азеотропа с водой концентрацией 98,3%. Из-за этого серную кислоту обычно хранят в виде 98%-ного раствора. Конечно, H2SO4 может иметь разные концентрации. Наиболее широко применяемыми водными растворами серной кислоты являются:

— 10% — т.н. сильно разведенная серная кислота, используемая, обычно, в качестве обезвоживающего средства, регулятора pH, лабораторного реактива,

— 29-32% — применяют в популярных свинцово-кислотных аккумуляторах,

— 62-70% — используют в качестве удобрения,

— 77-80% — применяют в процессе получения H2SO4 „камерным” методом и используют для производства глауберовой соли, т.е. сульфата натрия (Na2SO4),

— 98% — уже упомянутая ранее серная кислота.

Приглашение

Требования к компонентам

Нормальное протекание химических реакций предъявляет особые требования к веществам электролита. Основное требование – высокая степень чистоты материалов. Чем чище будут химические вещества для приготовления электролита, тем выше будет КПД аккумуляторов и их долговечность.

Согласно требованиям стандартов, аккумуляторная серная кислота должна содержать не менее 92 – 94% серной кислоты. Оставшиеся 6 – 8% занимает вода. Содержание солей металлов не более тысячных долей процента.

Если с перечисленными веществами вопросов обычно не возникает (ответственность за чистоту возлагается на предприятия, выпускающие материалы и торговые организации), то с водой дела обстоят несколько хуже. Многие автолюбители не делают различие между обычной и дистиллированной водой.

Вода из водопровода насыщенна растворами различных солей металлов и органических веществ. Простое кипячение в состоянии избавиться от незначительного количества солей жесткости, а остальные вещества остаются в неизменном виде. В водопроводной воде наиболее опасными для аккумуляторов являются соли железа, находящиеся там в больших концентрациях.

Активные вещества для электролита нужно разводить дистиллированной водой, которая отличается тем, что содержание солей в ней минимально. Такая вода по своим химическим и физическим параметрам практически соответствует идеальной.

Где применяется серная кислота

За год во всем мире используют более 200 миллионов тонн вещества. В основном оно уходит на производство удобрений и химической продукции:

  • Минеральные удобрения. Используют концентрированную серную кислоту
  • Лакокрасочные изделия
  • Органические и неорганические соединения для получения различных видов химической продукции
  • Удаление ржавчины, окалины в металлопроизводстве.
  • Производство медикаментов

Разбавленная серная кислота – 7 типов солей

Серная кислота используется в концентрированном виде и в виде растворов точнее солей. Смеси различных химических веществ:

  • Сульфат бария. Используется для производства белой краски и бумаги, так же используется для анализа желудка человека – специальное рентгеновское исследование.
  • Сульфат натрия 10-ти водный. Полученное вещество используется в соде, в медицине в производстве слабительных препаратов.
  • Сульфат кальция. В основном используется в медицине и строительстве. Встречается в природе в виде гипса.
  • Железный купорос. Используется при борьбе с вредителями растений.
  • Медный купорос. Так же используется в сельском хозяйстве – уничтожает вредителей и лечит растения. Так же используется для удаления плесени и других видов грибов со стен.
  • Сульфат алюминия. Используется для производства бумаги, картона, целлюлозы.
  • Различные виды Квасцов. Используют в производстве красок и дубления кожи.

Еще разбавленная серная кислота используется при производстве аккумуляторов в виде дистиллята. Так же такой вид раствора как Олеум. Он чаще всего необходим для транспортировки, так как не воздействует со сталью в отличие от концентрированной серной кислоты.

Промышленное производство серной кислоты (контактный способ):

1)      4FeS2 + 11O2 → 2Fe2O3 + 8SO2

2)      2SO2 + O2V2O5→ 2SO3

3)      nSO3 + H2SO4 → H2SO4·nSO3 (олеум)

Измельчённый очищенный влажный пирит (серный колчедан) сверху засыпают в печь для обжига в «кипящем слое«. Снизу (принцип противотока) пропускают воздух, обогащённый кислородом.
Из печи выходит печной газ, состав которого: SO2, O2, пары воды (пирит был влажный) и мельчайшие частицы огарка (оксида железа). Газ очищают от примесей твёрдых частиц (в циклоне и электрофильтре) и паров воды (в сушильной башне).
В контактном аппарате происходит окисление сернистого газа с использованием катализатора V2O5 ( пятиокись ванадия) для увеличения скорости реакции. Процесс окисления одного оксида в другой является обратимым. Поэтому подбирают оптимальные условия протекания прямой реакции — повышенное давление (т.к прямая реакция идет с уменьшением общего объема) и температура не выше 500 С ( т.к реакция экзотермическая).

В поглотительной башне происходит поглощение оксида серы (VI) концентрированной серной кислотой.
Поглощение водой не используют, т.к оксид серы растворяется в воде с выделением большого количества теплоты, поэтому образующаяся  серная кислота закипает и превращается в пар. Для того, чтобы не образовывалось сернокислотного тумана, используют 98%-ную концентрированную серную кислоту. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H2SO4·nSO3

Этапы утилизации кислот

Последовательность промышленной утилизации:

  1. Упаковка в тару, которая отвечает техническим требованиям.
  2. Транспортировка в специальном транспорте к месту утилизации ー оборудованному помещению компании, которая имеет разрешение и лицензию на утилизацию опасных веществ.
  3. Очистка вещества от твердых примесей при помощи фильтров.
  4. Утилизация отфильтрованной жидкости методом нейтрализации или регенерации.
  5. Утилизация твердых примесей и осадка. Если нейтрализовать эти отходы или использовать повторно нельзя, они подлежат захоронению на специальных полигонах.
  6. Переработка оставшейся жидкости или уничтожение.
  7. Поступление восстановленного реагента и побочных веществ в повторное производство.

В каких деталях содержится золото?

И серебро, и золото могут в равной степени использоваться для покрытия радиодеталей. Но несмотря на большую электропроводимость серебра и меньшую степень электрического сопротивления серебра, производители отдают предпочтение золоту. Это связано с тем, что данный драгоценный металл окисляется в разы медленнее, что позволяет служить детали долгие годы.

Зарубежные производители также используют золото для покрытия микросхем, но если вы и задались вопросом по этому поводу, ответом будет то, что в отечественной технике получить золото из радиодеталей можно гораздо больше.

Здесь стоит отметить, что больший процент содержания золота находится в радиодеталях советского производства. Наверняка в подвале, на чердаке или антресолях у Вас завалялись старые детали, которые выкинуть всегда было жалко. Вот тут-то они и пригодятся.

Итак, в советской электронике: телевизорах, магнитофонах, радиоприемниках присутствовали почти все радиодетали, так или иначе содержащие золото. Какие детали покрыты золотом и где их взять?

Транзисторы, содержание золота которых находится под кристаллом и проводником, иногда на ножках. В основном, это транзисторы серии КТ (101,103, 117, 603, 613 и т.д.).
Золото из микросхем также можно добыть, т.к. драгоценный металл наносился гальваническим путем, т.е. покрытие одного металла другим через действие электрического тока.
Разъемы, изготовленные в Советский период также покрыты слоем золота в несколько микрон.
Радиолампы, в них может содержаться помимо золота еще и серебро, платина, тантал (модели: 12П17Л, 6В1П, 6Ж1П-ЕВ, ГМИ-11 и т.д.) Более подробное описание радиоламп, можно найти в специализированной литературе. Нельзя не сказать о радиолампах серии ГМИ, в некоторых моделях вес чистого золота может достигать 16 гр.
В полупроводники, в частности, в диодах серии Д, светодиодах, стабилитронах, тиристорах и т.д. в небольших количествах есть золото.
В конденсаторах содержится наибольшее количество золота, но только в тех, которые использовались только для строения военной техники, причем, старого образца.
Также микрочастицы золота содержатся и в современных деталях, например, в сим-картах.
При изготовлении наручных металлических часов в СССР драгоценный металл выступал в роли покрытия корпуса.
Компьютерные детали также состоят из золотых элементов: процессоры, разъемы на материнских платах и т.д

Важно знать, что извлечение золота будет удачным, если компьютер «старше», т.к. в нем содержится больше драгоценного металла.

Вас может заинтересовать: Месторождения золота в Казахстане: планы на будущее

Как добывают серную кислоту

Самым распространенным способом промышленного получения данного вещества является добыча его из пирита железа. Этот процесс происходит в три этапа, на каждом из которых происходит определенная химическая реакция. Рассмотрим их. Сначала к пириту добавляют кислород, вследствие чего образуется оксид ферума и диоксид серы, который используется для дальнейших реакций. Это взаимодействие происходит при высокой температуре. Далее следует этап, на котором посредством добавления кислорода в присутствии катализатора, в качестве которого выступает оксид ванадия, получают триоксид серы. Теперь, на последней стадии, к полученному веществу добавляют воду, при этом получают сульфатную кислот. Это самый распространенный процесс промышленного добывания сульфатной кислоты, он используется наиболее часто потому, что пирит — самое доступное сырье, подходящее для синтеза описанного в этой статье вещества. Серную кислоту, полученную с помощью такого процесса, используют в различных сферах промышленности — как в химической, так и во многих других, к примеру, при переработке нефти, обогащении руд и т. д. Также ее использование часто предусмотрено в технологии изготовления множества синтетических волокон.

Зачем нужна утилизация кислот?

Проблема неграмотной утилизации кислот многогранна. Дело не только в загрязнении окружающей среды. Вред может наносится существенно раньше, чем через годы, доставляя неприятности не гипотетической окружающей среде, а непосредственно предприятию или учреждению, в котором хранится.

В крайних случаях некоторые из этих химических веществ, такие как пикриновая кислота, становятся взрывоопасными с возрастом. В течение нескольких месяцев она может взорваться только от трения открытия крышки.

Но наибольший ущерб кислоты наносят существенно чаще в виде штрафов за нарушение законов о хранении и утилизации опасных отходов. Тем более это актуально, если такие действия стали причиной ухудшения здоровья персонала. Чтобы предотвратить нежелательные последствия, рекомендуется придерживаться следующих рекомендаций:

  1. Заполненные контейнеры с химическими отходами хранить не более 180 дней до того, как заказать вывоз этих отходов.
  2. Кроме того, одновременно хранить в специальных помещениях ограниченное количество кислот – не более 200 л.  

Чтобы защитить сотрудников от потенциальных опасностей или просто сократить объем нежелательных материалов и риски штрафов, предприятия должны периодически удалять эти неиспользованные химические вещества. Рекомендуется прибегать к помощи специальных компаний. Но в некоторых случаях утилизацию кислот можно провести самостоятельно.

Можно ли класть плитку на невысохшую штукатурку

Технологии получения

Контактный метод

  • Соответствие всем заявленным характеристикам, за счёт чего удовлетворяются требования потребителей.
  • Почти не наносит ущерба окружающей среде.
  • Пирит (колчедан).
  • Сера.
  • Оксид ванадия (катализатор).
  • Сероводород.
  • Сульфиды различных металлов.
  • Колчедан отправляется в печь и обжигается при 800 °C не более. В этот момент сырьё пребывает в подвешенном состоянии, поэтому снизу в камеру поступает воздух. На этом этапе выделяются водяные пары, О2 и SO2, лишние отходы уничтожаются.
  • Ванадиевый катализатор способствует выделению тепла. Процесс сопровождается давлением на компоненты. На этом шаге температура равняется 420°C — 550°C. Происходит каталитическое окисление, и диоксид серы преобразуется в ангидрид серной кислоты.
  • В поглотительной башне ангидрит поглощается, затем появляется олеум H2SO4, которую разливают в особые ёмкости.

Необходимые инструменты и материалы для изготовления

Следует понимать, что паяльная кислота в домашних условиях будет иметь несколько иной состав, что в свою очередь делает ее более простой в производстве. Для ее приготовления требуются следующие материалы и инструменты:

  • Банка или другая емкость для приготовления и смешивания (желательно стеклянная);
  • Гранулированный цинк или вместо него можно применять стаканчики от старых батареек, которые содержат данный элемент;
  • Вода, которая служит для разбавления концентрата;
  • Концентрированная соляная кислота, которая является основным элементом и может растворять дополнительные примеси.

Материалы для кислоты для пайки своими руками

Технология создания кислоты для пайки своими руками

Первым делом подготавливается лабораторная емкость, в роли которой выступает стеклянная баночка, или другая фарфоровая и керамическая емкость. В нее следует поместить цинк или остатки от батареек. Только после помещения добавок в емкость помещается концентрат соляной кислоты

Заливать ее нужно очень осторожно, так как при попадании на руку можно получить химический ожог. Общий уровень жидкости в емкости не должен превышать ¾ от полного объема

Процесс смешивания соляной кислоты с цинком

Пропорции вещества, если есть точные измерительные инструменты, должны выглядеть следующим образом – на один литр соляной кислоты требуется 412 г. цинка. Естественно, что возможны небольшие отклонения, но они не должны быть слишком высокими.

Следующим пунктом, как приготовить паяльную кислоту, является ожидание окончания реакции. При контакте кислоты и цинка, металл начинает растворяться. Во время растворения выделяется водород, благодаря чему в жидкости образуются пузырьки.

Химическая реакция соляной кислоты и цинка

Также жидкость становится более прозрачной. После того, как все закончилось, полученную субстанцию следует перелить в другую емкость, которая плотно закрывается. Приобрести все материалы можно без проблем в магазинах, которые продают химические реактивы. Если использовать батарейки, то подойдут практически любые типа «ААА» и «АА».

Если вам требуется не сольно концентрированный материал, а нужно сделать что-то более слабое, что не обладало бы высоким уровнем агрессивности, то можно добавить воды, чтобы снизить концентрацию. Это также необходимо делать крайне аккуратно, чтобы не разбрызгать жидкость. Пропорции можно подбирать самостоятельно, в зависимости от особенностей пайки.

Как правильно приготовить паяльную кислоту в домашних условиях

В первую очередь нужно уделить внимание мерам безопасности, так как это очень опасное дело. При производстве на предприятиях, все делается в специальных шкафах, где реактивы смешиваются под вытяжкой и в защищенных от посторонних местах

Дома нужно обязательно использовать средства индивидуальной защиты, которые помогут защитить кожу, глаза, органы дыхания и прочие. Процесс растворения лучше всего производить вне помещения на открытом воздухе, или же обеспечить хорошее проветривание. Это необходимо из-за того, что в воздух активно выделяется водород. Поблизости также должен быть источник воды, для того, чтобы была возможность промыть поврежденный участок кожи, если случится несчастный случай. Желательно должна быть проточная вода из крана, лучше всего холодная, так как это слегка снизит уровень боли.

Если вещество было разлито на какую-либо поверхность, то его можно смыть при помощи раствора щелочи и воды. Не стоит забывать и о правильном хранении материала емкость должна быть герметичной, а хранить все следует в прохладном темном месте. Посторонние люди, которые не знают, как пользоваться паяльной кислотой, не должны иметь к ней доступа. Для флюса иногда применяется и чистая соляная кислота, без добавления примесей цинка, а также не разбавляемая водой. Такой флюс чаще всего применяется для материалов из железа.

 

Особенности технологии приготовления электролита

При самостоятельном приготовлении следует помнить следующее:

  • плотность кислоты и щелочи намного выше плотности воды;
  • реакции смешивания кислоты с водой и растворения щелочи происходят с выделением высокой температуры (до 80-90°С);
  • кислоты и щелочи взаимодействуют с большинством металлов.

Из перечисленного следует, что посуда для приготовления электролита должна быть из материала, стойкого к действию агрессивных веществ и температуры. Наиболее соответствует этим требованиям посуда из стекла и керамики. Использование пластиковой посуды возможно при условии недопускания ее нагрева до высоких температур. Нельзя использовать эмалированную посуду, поскольку при наличии незаметных трещин в эмали будет происходить загрязнение электролита солями металлов. То же самое относится к изделиям из нержавеющей стали. Такие материалы не вступают в реакцию с водой, но производители не гарантируют ее нейтральность по отношению к агрессивным веществам.

Приготовление кислотного электролита

Высокая плотность кислоты и способность разогрева при смешивании с водой обусловили специфику приготовления раствора: кислоту нужно вливать в воду. Если поступить наоборот, то вода, оказавшись сверху, нагреется до температуры закипания и выплеснется наружу вместе с каплями кислоты.

Чтобы уменьшить нагрев, кислоту целесообразно разбавить в два этапа. На первом готовится раствор плотностью 1.40, а затем, после остывания, делают электролит необходимой концентрации. Раствор с плотностью 1.40 называют корректирующим. Он применяется для коррекции плотности электролита в рабочих аккумуляторах. После добавления кислоты в воду смесь аккуратно перемешивают стеклянной палочкой. Приготовленный электролит необходимо оставить на некоторое время (от половины до суток) для его равномерного смешивания и полного остывания.

Приготовление щелочного электролита

Необходимое количество щелочи высыпают в отмеренное количество воды и перемешивают до полного растворения. Также необходимо выдержать время, пока осадок не растворится полностью и температура не опустится до нормальной.

Раствор щелочи нужно хранить в герметично закрытой таре, не допуская попадания воздуха. Углекислый газ легко вступает в реакцию со щелочами с образованием карбонатов – солей угольной кислоты. В результате содержание активного вещества в растворе с течением времени падает.

Растворы кислоты и щелочи должны быть прозрачными или иметь легкий желтоватый оттенок. Наличие мутности отстоявшегося раствора говорит о низкой чистоте исходных компонентов и для использования в аккумуляторах непригодны.

Решение Верховного суда No66- АД 19-4

Согласно постановлению Пленума Верховного Суда Российской Федерации от 24 октября 2006 года № 18 «О некоторых вопросах, возникающих у судов при применении Особенной части Кодекса Российской Федерации об административных правонарушениях»:

«При рассмотрении дел об административных правонарушениях, перечисленных в главе 12 Кодекса Российской Федерации об административных правонарушениях, когда субъектом правонарушения является лицо, которое не получало право управления транспортными средствами либо его утратило на основании статьи 28 Федерального закона от 10 декабря 1995 года No 196-ФЗ «О безопасности дорожного движения» (за исключением случаев лишения права управления в предусмотренном законом порядке), необходимо учитывать, что санкция в виде лишения права управления транспортными средствами к данному лицу не может быть применена», – говорится в постановлении ВС.

Иными словами, когда истек срок действия водительского удостоверения, гражданин автоматически лишается права на управление ТС, что ведет за собой следующий правовой феномен – по факту лишать его прав нельзя. Их попросту нет.

Хорошо, законодательство на то и является регулятором поведения людей в обществе, поэтому его так просто обойти нельзя. Для таких автомобилистов применима часть 3 статьи 12.8 КоАП:

административный арест на срок от десяти до пятнадцати суток или наложение административного штрафа на лиц, в отношении которых в соответствии с настоящим Кодексом не может применяться административный арест, в размере тридцати тысяч рублей. По этой статье и нужно привлекать нарушителя.

Вот здесь и кроется тот самый правоприменительный казус, на который обратил внимание ВС. Дело в том, что, несмотря на ошибку мирового судьи, вынесшего наказание по части 1 статьи 12.8 КоАП, по которому не образуется состав административного правонарушения, привлечь водителя к более строгому и правильному с точки зрения опасности деяния наказанию также нельзя!. Верховный суд подчеркивает, что «переквалификация действий (ФИО нарушителя) в данном случае невозможна, так как повлечет ухудшение его положения, что недопустимо»

Ведь арест на 10 или 15 суток является более суровым видом наказания (по мнению ВС), которое применять к подобного рода нарушителям, как оказалось, нельзя

Верховный суд подчеркивает, что «переквалификация действий (ФИО нарушителя) в данном случае невозможна, так как повлечет ухудшение его положения, что недопустимо». Ведь арест на 10 или 15 суток является более суровым видом наказания (по мнению ВС), которое применять к подобного рода нарушителям, как оказалось, нельзя.

В итоге было вынесено решение об отмене постановления по делу об административном правонарушении мирового и областного Иркутского суда.

Как добывают соляную кислоту в лабораторных условиях

Производство вещества масштабно, продажа свободна. В условиях лабораторных опытов добывают раствор воздействием серной кислоты высокой концентрации на обычную кухонную соль (натрия хлорид).

Существует 2 метода растворения хлороводорода в воде:

  1. Водород сжигается в хлоре (синтетический).
  2. Попутный (абгазный). Суть его в проведении органического хлорирования, дегидрохлорирования.

Вещество хорошо поддается синтезу при пиролизе отходов от хлороорганики. Это случается в результате распада углеводородов при полном дефиците кислорода. Можно использовать так же хлориды металлов, которые являются сырьем неорганических веществ. Если нет серной кислоты концентрированной (электролита), берите разведенную.

Что касается добывания реагента в природных условиях, то чаще всего эту химическую смесь можно встретить в водах вулканических отходов. Хлороводород – это составляющая минералов сильвина (калия хлорид, по виду напоминает кости для игр), бишофита. Все это – методы добыть вещество в промышленности.

В организме человека, данный фермент содержится в желудке. Раствор может быть как кислотой, так и основанием. Одним из распространенных способов добывания, называют сульфатный.

Химические свойства комплексных солей (на примере соединений алюминия и цинка)

В рамках программы ЕГЭ по химии следует усвоить химические свойства таких комплексных соединений алюминия и цинка, как тетрагидроксоалюминаты и третрагидроксоцинкаты.

Тетрагидроксоалюминатами и тетрагидроксоцинкатами называют соли, анионы которых имеют формулы [Al(OH)4]— и [Zn(OH)4]2- соответственно. Рассмотрим химические свойства таких соединений на примере солей натрия:

Данные соединения, как и другие растворимые комплексные, хорошо диссоциируют, при этом практически все комплексные ионы (в квадратных скобках) остаются целыми и не диссоциируют дальше:

Действие избытка сильной кислоты на данные соединения приводит к образованию двух солей:

При действии же на них недостатка сильных кислот в новую соль переходит только активный металл. Алюминий и цинк в составе гидроксидов выпадают в осадок:

Осаждение гидроксидов алюминия и цинка сильными кислотами не является удачным выбором, поскольку сложно добавить строго необходимое для этого количество сильной кислоты, не растворив при этом часть осадка. По этой причине для этого используют углекислый газ, обладающий очень слабыми кислотными свойствами и благодаря этому не способный растворить осадок гидроксида:

В случае тетрагидроксоалюмината осаждение гидроксида также можно проводить, используя диоксид серы и сероводород:

В случае тетрагидроксоцинката осаждение сероводородом невозможно, поскольку в осадок вместо гидроксида цинка выпадает его сульфид:

При упаривании растворов тетрагидроксоцинката и тетрагидроксоалюмината с последующим прокаливанием данные соединения переходят соответственно в цинкат и алюминат:

Коррозия металлов в серной кислоте

При концентрации серной кислоты около 50 – 55% поверхность железа переходит в пассивное состояние. Далее с повышением температуры и концентрации серной кислоты поверхность железа становится активной (наблюдается коррозия железа в серной кислоте).

В растворах серной кислоты, как и в других кислотах, на скорость коррозии железа большое влияние оказывает природа анионов. Это связано с торможением катодного и анодного процессов и их адсорбцией на поверхности металла.

Я.М. Колотыркин развил представления, что на анодное растворение железа оказывают влияние анионы. Это связано с образование комплекса:

Fe + H2O Fe(OH-)адс. + H+;

Fe(OH-)адс Fe(OH)адс + e-;

Fe(OH)адс + HSO4- →FeSO4 + H2O + e-;

Fe(OH)адс + SO42- → FeSO4 + OH- + e-;

FeSO4 = Fe2+ + SO42-.

Из вышеперечисленных уравнений понятно, что скорость анодного процесса возрастает с увеличением концентрации ионов HSO4- и SO42-. С поверхности железа сульфат ионы вытесняются хлорид ионами, но до определенной концентрации ионов хлора, скорость протекания анодного процесса замедляется.

В 95 – 98% серной кислоте при нормальной температуре хорошей устойчивостью обладают хромистые стали (с содержанием хрома около 17%) с небольшой добавкой молибдена или без него. В таких условиях (при большой концентрации серной кислоты) стоек также алюминий и углеродистые стали. Чистый алюминий (99,5%) более устойчив в серной кислоте, чем его сплавы, в состав которых не входит медь. Скорость коррозии алюминия в серной кислоте (и его сплавов) при повышении температуры с 20°С до 98°С увеличивается с 8 до 24 г/(м2•сут). Коррозионно-стойкие стали в 5-ти или 20-% растворе при температуре кипения серной кислоты устойчивы только в присутствии ингибиторов коррозии.

При обычной температуре в серной кислоте коррозия меди практически не наблюдается. А при повышении температуры до 100°С процесс разрушения интенсифицируется. В 25% растворе серной кислоты, повышенном давлении и температуре близкой к 200°С медь быстро разрушается.

Латунь не обладает коррозионной стойкостью в растворах серной кислоты любых концентраций даже при комнатной температуре. Устойчивость латуней к разрушению в серной кислоте можно только повысить введением в раствор 30% соли CuSO4•5H2O.

Исторические сведения

Серная кислота известна с древности, встречаясь в природе в свободном виде, например, в виде озёр вблизи вулканов. Возможно, первое упоминание о кислых газах, получаемых при прокаливании квасцов или железного купороса «зеленого камня», встречается в сочинениях, приписываемых арабскому алхимику .

В IX веке персидский алхимик Ар-Рази, прокаливая смесь железного и медного купороса (FeSO4•7H2O и CuSO4•5H2O), также получил раствор серной кислоты. Этот способ усовершенствовал европейский алхимик Альберт Магнус, живший в XIII веке.

Схема получения серной кислоты из железного купороса — термическое разложение сульфата железа (II) с последующим охлаждением смеси

Молекула серной кислоты по Дальтону

2FeSO4+7H2O→Fe2O3+SO2+H2O+O2{\displaystyle {\mathsf {2FeSO_{4}+7H_{2}O{\xrightarrow {}}Fe_{2}O_{3}+SO_{2}+H_{2}O+O_{2}}}}
2SO2+2H2O+O2⇄2H2SO4{\displaystyle {\mathsf {2SO_{2}+2H_{2}O+O_{2}\rightleftarrows 2H_{2}SO_{4}}}}

В трудах алхимика Валентина (XIII в) описывается способ получения серной кислоты путём поглощения водой газа (серный ангидрид), выделяющегося при сжигании смеси порошков серы и селитры. Впоследствии этот способ лег в основу т. н. «камерного» способа, осуществляемого в небольших камерах, облицованных свинцом, который не растворяется в серной кислоте. В СССР такой способ просуществовал вплоть до 1955 г.

Алхимикам XV в известен был также способ получения серной кислоты из пирита — серного колчедана, более дешевого и распространенного сырья, чем сера. Таким способом получали серную кислоту на протяжении 300 лет, небольшими количествами в стеклянных ретортах.
Впоследствии, в связи с развитием катализа этот метод вытеснил камерный способ синтеза серной кислоты. В настоящее время серную кислоту получают каталитическим окислением (на V2O5) оксида серы (IV) в оксид серы (VI), и последующим растворением оксида серы (VI) в 70 % серной кислоте с образованием олеума.

В России производство серной кислоты впервые было организовано в 1805 году под Москвой в Звенигородском уезде. В 1913 году Россия по производству серной кислоты занимала 13 место в мире.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации