Андрей Смирнов
Время чтения: ~15 мин.
Просмотров: 0

Фотореле на микросхеме кр1182пм1

Основные технические данные.

  • Напряжение сети – 85…265 В;

  • Мощность нагрузки (при максимальном напряжении) – 7000
    Вт;

  • Диапазон регулирования (при напряжении сети 220 В) –
    0…220 В.

  • C2, С3 – К53-19-16В-1мкФ ±10%

  • R1 – СП3-30к-А-0,125-47кОм ±20%

  • R2 – С2-23-0,125-3,3кОм ±10%

  • R3 – С2-23-1-680Ом ±10%

  • SA1 – любой слаботочный

  • VS1 – КУ602ГМ

  • C1, C2 – К53-19-16В-1 мкФ ±5%

  • DA1 – КР1182ПМ1

  • R1 – СП-I-0,5-47 кОм ±10%

  • R2 – С2-23-0,125-4,7 кОм ±10%

  • R3 – С2-23-0,125-240 Ом ±10%

  • VD1, VD2 – КД243Д

  • VS1 – МТТ2-63-7

При замене переключателя SA1 на конденсатор ёмкостью 50…200
мкФ и резистора R1 на выключатель устройство будет работать в
режиме плавного пуска (плавного увеличения мощности на
нагрузке после размыкания выключателя).

Справочные материалы:

1. Описание микросхемы КР1182ПМ12.
Технические характеристики некоторых симметричных
тиристоров3. Силовые приборы отечественного производства4.
Некоторые схемы с
использованием КР1182ПМ1

А. Анкудинов

Особенности и срок службы

В ручных электроинструментах, таких как: болгарка(ушм), циркулярная пила, шуруповерт, дрель – используют коллекторные двигатели с последовательным возбуждением.

Они могут работать на постоянном и на переменном токе.

Для их запитки в большинстве случаев используется обычная электросеть 230 В 50 Гц. Раньше для профессионального инструмента использовалась сеть 380 В. Теперь, с ростом мощности потребителей в однофазных сетях (офисы и жилой сектор), появились и профессиональные электроинструменты на 220 В.

Коллекторные двигатели имеют большой крутящий и пусковой моменты, компактны, легко изготавливаются на повышенное напряжение. Крутящий момент здесь является решающим. При невысокой массе машины он как раз подходит для ручного электроинструмента. Но у таких электромоторов имеются недостатки и слабые места. Одно из таких слабых мест – щеточный узел.

Щетки из прессованного графита с наполнителями трутся о медные пластины коллектора и подвергаются механическому износу и электроэрозии. Это приводит к увеличению искрения и повышает пожарную и взрывоопасность электроинструмента. Попадание минеральной пыли внутрь ускоряет износ. Хотя вентиляторы, предусмотренные конструкцией, выдувают воздух наружу, пыль и цемент могут легко попадать внутрь. Во время простоя, если инструмент неудачно положили, пыль легко попадает внутрь. На практике это постоянное явление.

Щетки электродвигателя из прессованного графита

Еще один недостаток электроинструмента – частые поломки редуктора. Это происходит как раз из-за большого пускового момента. Достоинство оборачивается недостатком. С поломкой редуктора приходится менять инструмент, ремонту они, обычно, не подлежат. К сожалению, промышленность, в стремлении снизить себестоимость продукции делает это за счет качества. Хочешь пользоваться хорошим электроинструментом – плати немалые деньги.

Детали

«Цоколевка» указанного на схеме фототранзистора приведена на рис. 2. Его можно заменить на L51P3, L32P3C, а симистор -на КУ208Д1, ТС112-10-4, ТС112-16-4, ТС122-25-6, BT138X-600F, BT136B-800F и другие аналогичные на напряжение не менее 400 В и соответствующий ток нагрузки.

При необходимости симистор устанавливают на теплоотвод. К примеру, с симистором КУ208Г в качестве нагрузки можно использовать лампы накаливания общей мощностью до 1000 Вт, при этом симистор устанавливают на теплоотвод с площадью поверхности не менее 300 см2.

Рис. 2. Цоколевка фототранзистора.

Конденсатор С4 — К73-16, К73-17, К78-2 на напряжение не менее 400 В, остальные конденсаторы — К50-35, К53-4 или импортные аналоги.

Дроссель наматывают проводом ПЭВ-2 0,82 (70 витков) на двух склеенных (например, клеем БФ-2) кольцах К38х24х7 из феррита М2000НМ. Предварительно острые кромки феррита затупляют, а затем сложенные кольца обматывают тесьмой или фторопластовой лентой.

Провод укладывают с «натягом», в один слой. Готовый дроссель пропитывают лаком, что уменьшает его жужжание. При работе автомата с нагрузкой мощностью менее 300 Вт допустимо использовать магнитопровод меньших габаритов. Для защиты микросхемы и симистора от бросков напряжения параллельно конденсатору С4 можно подключить варистор на напряжение 420…470 В, например, типа FNR-10K431.

Устройство плавного пуска электроинструмента на микросхеме КР1182ПМ1

Случаи отказа разнообразного ручного электроинструмента отнюдь не являются редкостью. Электродрели, болгарки, любзики …

Часто причиной отказа являются значительные пусковые токи, дающие экстремальные динамические нагрузки на узлы механизмов, например на редукторы, да и на сам ротор, а также на корпус, который прочно связан с двигателем.

При пуске двигателя резкий бросок тока просто рвет с места, и такой старт иногда оказывается причиной фатальной неисправности устройства. Особенно это касается тех устройств, где применен коллекторный двигатель.

Во избежание подобных неприятностей, используют устройства плавного пуска коллекторных двигателей. К примеру, микросхема – фазовый регулятор КР1182ПМ1 позволяет легко изготовить устройство плавного пуска, которое даже не потребует сложной наладки. Через него можно будет безопасно подключать к сети любой электроинструмент, питаемый переменным напряжением 220 В, частотой 50 Гц.

Устройство микросхемы КР1182ПМ1

Как пуск, так и остановка электродвигателя инструмента будет осуществляться как обычно, кнопкой на самом инструменте, а само устройство плавного пуска не потребляет никакой энергии, когда инструмент выключен.

Схема устройства довольно бесхитростная. Вилка и дополнительная розетка завершают схему, получается с виду что-то вроде приставки или переходника. 

Вилку втыкают в сетевую розетку, а в розетку устройства втыкают непосредственно вилку инструмента (или удлинитель с несколькими розетками для поочередного использования различных приборов), который и будет плавно запускаться.

Когда цепь двигателя замыкается собственной кнопкой инструмента, например болгарки, то на микросхему подается в этот момент напряжение, и тогда начинается процесс постепенной зарядки конденсатора С2.

Этот процесс зарядки и создает задержку на включение интегрированных тиристоров микросхемы, а следовательно и внешнего симистора VS1, и эта задержка от периода к периоду сетевого напряжения становится все меньше и меньше.

Таким образом, от периода к периоду нарастает и ток через цепь нагрузки, то есть ток двигателя электроинструмента постепенно нарастает, постепенно же набираются и номинальные обороты.

Указанная на схеме емкость конденсатора С2 в 47 мкф позволяет за 2 — 2,5 секунды разогнать инструмент до максимума номинальных оборотов, и это буквально считанные секунды, которые на работе не скажутся, задержки как таковой у рабочего не возникнет, однако динамического рывка и тепловой перегрузки в момент запуска инструмента уже точно не будет.

Резистор R1 может быть заменен на переменный, тогда отдаваемую в нагрузку мощность можно будет плавно регулировать, уменьшая сопротивление резистора R1, можно будет понижать мощность, отдаваемую сетью в цепь электроинструмента. Функция резистора R2 – ограничение тока управляющего электрода симистора VS1. Конденсаторы C1 и C3 – типовые элементы обвязки микросхемы КР1182ПМ1.

На деле конденсаторы и резисторы можно припаять прямо к ножкам микросхемы даже навесным монтажом, затем поместить сборку в небольшой корпус и залить его эпоксидной смолой, оставив два проводных вывода для симистора.

Конечно, самому внешнему симистору потребуется небольшой радиатор, однако схема управления весьма и весьма маломощна, и охлаждения особого не требует.

Такое решение позволяет управлять пуском даже очень мощных нагрузок, ибо симистор может быть поставлен на ток до 50 А.

Устройство плавного пуска на микросхеме КР1182ПМ1 не требует наладки.

Ежели есть вероятность заклинивания инструмента в процессе работы, то следует учесть запас для симистора по току. В принципе же ограничения по мощности нет.

Другие варианты использования микросхемы КР1182ПМ1:

Схемы фотореле для управления освещением

Тиристорные регуляторы мощности

Устройства плавного пуска электродвигателя

Схема подключения.

В зависимости от симистора который вы будете использовать в проекте возможны два варианта подключения.

Распиновка симистора AAG (BTA41)

Распиновка симистора GAA

Это открытый проект! Лицензия, под которой он распространяется – Creative Commons – Attribution – Share Alike license.

Большое количество нагрузок требуют регулирования мощности, например такие:

  • лампы накаливания или любые другие диммируемые;
  • нагреватели;
  • коллекторные электродвигатели и в частности электроинструмент.

Если до появления полупроводниковых элементов задачи регулировки мощности требовали применения громоздких электромагнитных устройств, то с появлением тиристоров задача фазового регулирования мощности сильно упростилась. А вот симисторный регулятор мощности ещё проще тиристорного, ему не требуется выпрямителя. Симистор может проводить ток как в течении положительной полуволны переменного напряжения, так и в течении отрицательной.

Точно также как и тиристорный регулятор симисторный регулятор мощности осуществляет регулировку за счет изменения угла открывания. Чем больше угол ‘a’ тем меньше энергии попадает на выход устройства.

Схема получается настолько простой и дешевой что её стали встраивать даже в кнопки дешевых дрелей.

Таблица номиналов элементов

  • C1 – 0,1 мк;
  • R1 – переменный резистор 470 кОм;
  • R2 – 10 кОм;
  • VS1 – DB3;
  • VS2 – BTA225-800B.

При данном типе VS2 cимисторный регулятор мощности способен отдавать в нагрузку до 25 А. Удивительно, но схема содержит всего 5 элементов: R1 и R2 – определяют скорость C1 и чем она будет больше тем скорее откроется симметричный динистор VS1 и откроет симистор VS2.

Как убрать на диете для ленивых минус 12 кг за 2 недели: важные детали и нюансы

О чём следует знать до начала диеты:

1.    Перед тем как садиться на диету, нужно убедиться в отменности своего здоровья, а также поинтересоваться противопоказаниями и измерить вес. Последний показатель необходим для расчёта оптимального суточного количества жидкости. Для этого нужно цифру веса разделить на число 20 – это и будет суточный объём воды.

2.    Для организма будет лучше, если начинать диету постепенно. Имеется в виду, что в первые дни не нужно пить сразу много воды, лучше начать с 1 л, независимо от веса.

3.    Большое поступление жидкости в организм способно вымывать из него такие полезные микроэлементы, как калий, кальций

Поэтому важно принимать во время диеты витаминные комплексы. Людям, у которых наблюдается нехватка витаминов, следует предварительно укрепить организм. 4.    Пить нужно воду комнатной температуры, холодная жидкость замедляет обменные процессы и может стать причиной появления простуды

4.    Пить нужно воду комнатной температуры, холодная жидкость замедляет обменные процессы и может стать причиной появления простуды.

5.    Лучшее время года для ленивой диеты – это лето. В жаркое время избыток воды не будет давать нагрузку на почки, а будет выходить естественным путём через пот.

6.    Не следует придерживаться диеты дольше указанного срока 14 дней. Дальнейшее применение будет давать большую нагрузку на почки. Обязательно между повторными курсами необходимо делать перерыв хотя бы 3-6 месяцев.

7.    Не рекомендуется пользоваться диетой людям с хроническими заболеваниями почек, печени, органов пищеварения или сбоями в работе этой системы.

8.    Важно наличие полноценного здорового сна. Спать нужно как минимум 8-9 часов. Если у вас немного иной режим дня, то организму может быть сложно выдержать двухнедельный курс похудения

Если у вас немного иной режим дня, то организму может быть сложно выдержать двухнедельный курс похудения.

9.    Желательно сочетать методику похудения хотя бы с минимальными физическими нагрузками – можно выполнять несложные физически упражнения, делать утреннюю зарядку, ходить на пробежки.

Часто результаты диеты не оправдывают ожиданий. Такое может случиться с каждым, и причины кроются чаще всего в самих худеющих. Нет, это не особенности организма или слишком «широкая кость». Это самая обычная лень, слабость характера или недостаточное владение информацией.

Несколько распространённых ошибок, которые допускаются по незнанию:

1.    Нельзя выпивать большой объём жидкости за 1 раз – на такие поступки организм реагирует непредсказуемо. В итоге появляется диуретический эффект, который ведёт к нехватке жидкости в организме. И большой объём воды способен растянуть желудок, в итоге он будет нуждаться в большем количестве пищи.

2.    Строго запрещены перекусы в таком типе питания. Если перекуса не избежать, то ему обязательно должны предшествовать 2 стакана воды. За перекусы считаются также кофе, чай.

3.    Пить нужно сырую воду. Кипячёная жидкость теряет огромное количество минералов и солей, поэтому является практически бесполезной.             

Перевешивание водного баланса в большую сторону в организме всегда лучше, чем дефицит воды. Но избыток жидкости тоже имеет свои недостатки, например, активное выведение минералов и солей, образование отёчности, провоцирование появления сердечного приступа.

Поэтому пить без меры и придерживаться правила «чем больше выпью – тем быстрее похудею» в корне неправильно. Всегда нужно пить чётко определённое исходя из веса количество воды.

Единственное исключение может быть в жаркое время года, когда повышена физическая активность, усилено потоотделение. В таких случаях разрешается выпить немного больше воды, но с условием равномерного распределения в течение всего дня.

Полезные ссылки:

Налаживание

Правильно смонтированное устройство в налаживании не нуждается. Фототранзистор устанавливают так, чтобы на него не попадал свет от ламп накаливания. Если понадобится увеличить чувствительность устройства, следует воспользоваться вторым фототранзистором, включенным параллельно первому.

При установке устройства на улице следует выбрать для него затемненное место, например, на северной стороне фонарного столба. Корпус устройства раскрашивают светлой краской, он должен быть достаточно просторным и не иметь вентиляционных отверстий, иначе с наступлением осенних холодов может стать пристанищем для насекомых.

В случае установки фотореле вне помещения необходимо использовать соединительные шнуры и провода, предназначенные для наружной проводки, например, ШРТ, ШПС. В особых случаях нужно учитывать возможность повреждения проводов грызунами, поэтому лучше использовать провод в металлической оплетке -типов ПРФ, ПРФЛ, ПРИ.

Литература: А. П. Кашкаров, А. Л. Бутов — Радиолюбителям схемы, Москва 2008.

Плавный пуск – для чего это нужно

Для снижения непомерной нагрузки на механику электроинструмента при пуске, могут быть приняты меры со стороны электропитания. Вместо подачи на электродвигатель полного напряжения от источника (электросети), можно подавать пониженное напряжение, с помощью плавного пуска. Но где его взять? Речь идет о массовом применении. В отдельных случаях специалисты и умельцы могли решать эту задачу, но большинству рядовых потребителей это было недоступно.

Существует три способа ограничить пусковой момент электроинструмента и добиться плавного старта:

  1. Применение реостатов;
  2. Применение трансформаторов;
  3. Применение полупроводниковых ключей.

Его можно применять и на постоянном, и на переменном токе.

Значительная часть мощности теряется на нагрев сопротивления реостата. Если задача ограничивается только плавным пуском, то это вполне терпимо. Если таким способом регулировать рабочую скорость электродвигателя, то это лишний нагрев окружающий среды и расход электроэнергии. В любом случае устройство оказывается громоздким.

Второй способ намного лучше и экономичнее. Подходит только для переменного тока. Он также может повысить электробезопасность при работе с электроинструментом. Недостаток в том, что классические трансформаторы теперь очень недешевы. Даже при самостоятельном изготовлении, так как в них уходит много дорогой меди. Устройство получается также достаточно большим и тяжелым.

Трансформатор

Третий способ плавного пуска самый современный и дешевый. Он опирается на массовое применение полупроводников. В свое время, в исследования и наладку промышленного производства полупроводниковых приборов были вложены огромные средства. Но дешевизна материалов, из которых их производят, и массовость выпуска уже успели все окупить. Благодаря невысокой себестоимости такие приборы доступны всем.

Главная особенность полупроводниковых ключей – нет механических контактов и работают они с огромной скоростью (частотой переключения). Переключаемые ими токи могут достигать больших величин, при больших напряжениях в отключенном состоянии. При этом, такие приборы практически не греются и не потребляют лишней энергии, как реостаты и отлично подходят для современных электроинструментов.

Виды полупроводниковых ключей

Тиристоры и симисторы

Сопротивление разомкнутого ключа достигает миллионов Ом, ток через него практически не протекает.

Сопротивление замкнутого ключа лежит в пределах единиц и десятых долей Ома.

Хотя при этом может протекать значительный ток, на ключе падает слишком малое напряжение, чтобы на нем выделялось, по закону Джоуля-Ленца, большое тепло. В обеих случаях он остается практически холодным.

Это относится к любому из типов силовых ключей, каковых существует три:

  • Тиристоры и симисторы;
  • Полевые транзисторы MOSFET;
  • Транзисторы IGBT.

Исторически первыми появились тиристоры. С их помощью регулировали мощность в цепях переменного тока, управляя фазой отпирания прибора.

С помощью регулировки фазы управляющего напряжения (длительность t1) можно влиять на момент отпирания симистора в каждом полупериоде (t3) и таким образом, на долю энергии, попадающей в нагрузку и соответственно на электродвигатель.

С появлением мощных полевых транзисторов с изолированным МОП-затвором (металл-окисел-полупроводник, или на английском Metal-Oxide-Semiconductor Field Effect Transistor) током в цепи стали управлять, изменяя ширину открывающих импульсов. Этот метод очень эффективен в цепях с постоянным током, для чего его сначала выпрямляют, и применяется в сварочных инверторах, частотных преобразователях и т.д.

Для наиболее мощных электроинструментов применяют IGBT – биполярные транзисторы с изолированным затвором. Это комбинация полевого транзистора с биполярным.

Для регулирования электродвигателя в настоящее время применяют уже устоявшееся, давно применяемое решение на симисторах. Более продвинутые решения пока не очень распространены.

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организацииМуниципалитетыРайоныОбразованияПрограммыОтчетыпо упоминаниямДокументная базаЦенные бумагиПоложенияФинансовые документыПостановленияРубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датамРегламентыТерминыНаучная терминологияФинансоваяЭкономическаяВремяДаты2015 год2016 годДокументы в финансовой сферев инвестиционной

Схема более мощного егулятора

Однако, мощность нагревательного прибора обычно больше 200Вт. Для усиления выхода можно схему дополнить симистором, как показано на рисунке 2. Но, здесь речь не об этом.

Если переменный резистор для регулировки заменить фоторезистором или термистором, то можно будет организовать довольно интересный прибор, который, в отличие от многих «типовых» будет не включать и выключать нагрузку в зависимости от температуры или освещения, а плавно регулировать её мощность.

Например, если это касается освещения, то яркость света лампы будет плавно нарастать на закате, и плавно гаснуть на рассвете. Если же дело касается нагревательного прибора, то его мощность его также будет плавно регулироваться в зависимости от температуры.

Рис. 2. Схема включения микросхемы КР1182ПМ1 с симистором КУ208Б для управления мощностью нагревательного тена.

Важно и то, что закон регулировки регулятора на КР1182ПМ1 при котором с увеличением сопротивления возрастает мощность нагрузки как раз подходит именно для таких целей. Ведь сопротивление фоторезистора обратно пропорционально яркости света, а сопротивление полупроводникового терморезистора (термистора) обратно пропорционально температуре

Но с этим есть несколько нюансов.

Вот на рисунке 3 показана схема регулятора освещения, в котором используется относительно низкоомный фоторезистор GL5506. Световое сопротивление его около 2-5 кОм, темновое около 500 кОм. При всем этом, и то и другое сопротивление слишком велико. Темновое сопротивление легко понизить включением ему параллельно дополнительного резистора, в данном случае, R1.

Но темновое сопротивление, даже такое малое как 2-5 кОм приведет к тому, что нить накала лампы будет слегка накалена, потому что для полного выключение нужно менее 1 кОм.

В принципе, с этим можно мириться. Но большинство доступных фоторезисторов более высокоомны чем GL5506. Например популярный фоторезистор GL5528 на свету имеет сопротивление около 20 кОм. Если его включить так же, как на рис 3, то лампа будет и днем гореть достаточно ярко.

Рис. 3. Схема фотореле на основе микросхемы КР1182ПМ1.

В таком случае нужно сделать усилитель, хотя бы на одном транзисторе, как это показано на рисунке 4. Здесь фоторезистор и переменный резистор R1 образуют делитель напряжения, устанавливающий напряжение смещения на базе транзистора VТ1.

И при сопротивлении FR1 уже около 20-30 кОм (зависит от регулировки резистора R1) транзистор откроется на столько, что напряжение на конденсаторе С3 будет около нуля и лампа будет полностью выключена.

Датчик света, на рисунке 4, настраивается при помощи переменного резистора R1 С его помощью можно отрегулировать то, как резко будет изменяться яркость света лампы в зависимости от изменения естественной освещенности.

Возможно, параллельно конденсатору С3 нужно включить дополнительный резистор сопротивлением 100 кОм Но у меня схема нормально работала и без этого резистора.

Рис. 4. Регултяор яркости свечения лампы 220В с датчиком света, КР1182ПМ1.

При размещении нужно учесть то, что фоторезистор FR1 должен быть расположен таким образом, чтобы на него не попадал прямой свет от лампы Н1.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации