Андрей Смирнов
Время чтения: ~20 мин.
Просмотров: 0

Тренажер powerball: вся сила в одном кулаке

Что такое гироскоп

Юла, она же волчок – известная игрушка. Она при быстром вращении сохраняет устойчивость на одной точке опоры. Это незамысловатое устройство является простейшим примером гироскопа – приспособления, реагирующего на изменения углов ориентации тела, на котором оно установлено, в трех плоскостях. Термин впервые использовал французский физик и математик Жан Фуко.

Гироскопы классифицируют по количеству степеней свободы и по принципу действия (механические и оптические). Вибрационные гиродатчики, подвид механических, широко используются в мобильных устройствах. Применение GPS-навигации отодвинуло на второй план изначальную функцию гироскопов – помощь при ориентации на местности, но эта технология все еще незаменима в современных моделях телефонов.

Отличие от акселерометра

На современных мобильных гаджетах часто установлены оба эти прибора. Ключевое отличие гироскопа от акселерометра и других сенсоров заключается в самом принципе работы данных аппаратов. Первый определяет собственный угол наклона относительно земли, а второй способен измерять линейное ускорение. Преимущество акселерометра – знание ускорения позволяет точно вычислить расстояние, на которое было перемещено устройство.

На практике оба прибора могут как заменять, так и дополнять друг друга. Фактически и тот, и тот лишь регистрируют положение относительно земной поверхности. Как и гироскоп, акселерометр может передавать сведения об ускорении смартфону, на который он установлен.Часто используются оба датчика; они хорошо взаимодействуют. В таблице зафиксированы ключевые особенности приборов.

Акселерометр

Гироскоп

Общие черты

Определяют свое положение, взаимодействуют с другим программным обеспечением

Различия

Определение собственного ускорения

Определяет угол наклона

Измеряет расстояние

Измеряет положение устройства

Принцип работы­

Простыми словами, гироскоп – это волчок, быстро вращающийся вокруг вертикальной оси, закрепленный на раме, которая способна поворачиваться вокруг горизонтальной оси, и закреплена на другой раме, которая поворачивается вокруг третьей оси. Как бы мы ни поворачивали волчок, он всегда имеет возможность все равно находиться в вертикальном положении. Датчики снимают сигнал, как волчок ориентирован относительно рам, а процессор получает информацию и считывает с высокой точностью, как рамы в этом случае должны быть расположены относительно силы тяжести.

Кого можно порадовать гироскопическим тренажером?

Гироскопический тренажер может стать эффективным средством преодоления синдрома зажатости запястного канала, снятия мышечной усталости, а также развития суставов и мышц запястья для следующих категорий пользователей:

  • офисных работников со стажем;
  • людей, деятельность которых связана с необходимостью длительного нахождения в малоподвижном, сидячем положении;
  • пользователей, которым приходится проводить основную часть дня перед компьютером;
  • людей старшего возраста, что страдают от недостатка активности;
  • школьников и студентов, что нуждаются в развитии мелкой моторики пальцев или преодолении хронической зажатости кистевого сустава.

Вязкостное демпфирование.

Для гашения выходного момента силы относительно оси двухстепенного гироузла можно использовать вязкостное демпфирование. Кинематическая схема такого устройства представлена на рис. 5; она отличается от схемы на рис. 4 тем, что здесь нет противодействующей пружины, а вязкостный демпфер увеличен. Когда такое устройство поворачивается с постоянной угловой скоростью вокруг входной оси, выходной момент гироузла заставляет рамку прецессировать вокруг выходной оси. За вычетом эффектов инерционной реакции (с инерцией рамки связано в основном лишь некоторое запаздывание отклика) этот момент уравновешивается моментом сил вязкостного сопротивления, создаваемым демпфером. Момент демпфера пропорционален угловой скорости вращения рамки относительно корпуса, так что выходной момент гироузла тоже пропорционален этой угловой скорости. Поскольку этот выходной момент пропорционален входной угловой скорости (при малых выходных углах рамки), выходной угол рамки увеличивается по мере того, как корпус поворачивается вокруг входной оси. Стрелка, движущаяся по шкале (рис. 5), указывает угол поворота рамки. Показания пропорциональны интегралу угловой скорости вращения относительно входной оси в инерциальном пространстве, и поэтому устройство, схема которого представлена на рис. 5, называется интегрирующим двухстепенным гиродатчиком.

На рис. 6 изображен интегрирующий гиродатчик, ротор (гиромотор) которого заключен в герметично запаянный стакан, плавающий в демпфирующей жидкости. Сигнал угла поворота плавающей рамки относительно корпуса вырабатывается индукционным датчиком угла. Положение поплавкового гироузла в корпусе задает датчик момента в соответствии с поступающими на него электрическими сигналами. Интегрирующие гиродатчики обычно устанавливают на элементах, снабженных сервоприводом и управляемых выходными сигналами гироскопа. При таком расположении выходной сигнал датчика момента можно использовать как команду на поворот объекта в инерциальном пространстве. См. также ГИРОКОМПАС.

Принцип работы

Как уже отмечалось выше, функционирует гироскопический тренажер на основе быстро вращающегося ротора в середине пластиковой сферы. В основе тренировки лежит выполнение круговых, вращательных движений кистью руки, что добавляет крутящемуся ротору дополнительные обороты. Вращение тренажера с активизированным ротором приводит к воздействию на кисть противоположно направленных сил, что требует крепкого удержания устройства в руке.

Запуск ротора вместе с наклоном тренажера в стороны заставляет оси прибора двигаться по специальным канавкам – верхней и нижней. Сила трения между осями и структурой канавок может замедлять либо ускорять вращение внутреннего гироскопа. Максимальное ускорение становится наиболее ощутимым, когда оси ротора приобретают самое ровное скольжение по канавкам.

Наличие силы трения играет определяющую роль в тренировках при помощи гироскопического тренажера. Поэтому для достижения заметного эффекта не рекомендуется производить смазку механизмов подобных устройств.

Полтора века гироскопии

В то время как устройство акселерометров принципиально не менялось с момента их создания, гироскопы за последние сто пятьдесят лет прошли в своем развитии четыре больших этапа принципиальных преобразований, каждый из которых непосредственно связан с историей развития физики и технологий.

Столь длительный цикл не случаен. Создание гироскопов, их доведение до уровня промышленных образцов — это длинный путь, двадцать, а то и тридцать лет. Не приходится ожидать, что кто-то вдруг придумает новый тип гироскопа, тут же запустит его в производство и всех опередит. Цикл жизни таких изделий тоже очень длинный: затраты на их разработку очень велики, и, пока они не окупятся, никто и не будет спешить что-то менять в системах, где они используются. А предшествующая разработка теоретических основ гироскопии потребовала еще больше времени.

Этот гирокомпас использовался во Второй мировой войне для управления полетом ракет «Фау-2»

Фотография: gettyimages.ru

Первый этап — это классический механический гироскоп, который был изобретен французским физиком Жаном Бернаром Леоном Фуко в середине XIX века. Первые промышленные образцы появились в конце XIX века — австрийский инженер Людвиг Обри применил гироскоп для стабилизации курса торпеды.

Хотя детская игрушка — волчок, изучение поведения которого легло в основу теории гироскопов, — известна с древнейших времен, создание гироскопа стало возможным только после серьезного развития классической механики и ее математического аппарата, что заняло значительную часть XVIII и XIX веков. В основу теории гироскопов легли труды многих величайших ученых — от Ньютона и Эйлера до Ковалевской и Жуковского. Одновременно, во многом на основе тех же теоретических достижений, развивались технологии точной обработки металлов, появилось современное металлорежущее оборудование, без которого изготовление гироскопов невозможно.

Второй этап развития гироскопии — это кольцевые лазерные гироскопы (КЛГ). Их создание стало возможным только после длительного периода развития квантовой электроники, занявшего почти весь ХХ век. В ее основе лежат труды творцов современной физики, начиная с Эйнштейна и заканчивая создателями первых квантовых генераторов — Прохоровым, Басовым, Таунсом. В нашей стране их начали разрабатывать еще в 1970-е, а пик применения — это уже 2000 годы. Создание лазерных гироскопов стало возможным благодаря появлению прецизионных методов механической и физической обработки различных материалов, в первую очередь зеркальных стекол. Шероховатость их поверхности — пять ангстрем — это уже на уровне размера атома. А радиус кривизны такого зеркала составляет семь метров при размере два сантиметра.

 Изобретение гироскопа стало результатом изучения поведения древнейшей детской игрушки — волчка

Третий этап развития гироскопии, пик которого приходится на наше время, — это использование в системах навигации волновых твердотельных гироскопов (ВТГ). На их примере можно видеть спираль развития гироскопов, что называется, в натуральном виде: от механического гироскопа через оптико-электронный, снова к механическому, основанному на другом принципе (он описан ниже). Этот принцип был разработан уже в конце ХIX века, создание самих гироскопов стало возможным благодаря переходу на следующий этап развития средств обработки различных материалов, того же стекла. Ведь точность обработки резонаторов ВТГ достигает одного микрона. Но и этой точности для работы ВТГ недостаточно. Приходится проводить его дополнительную ионоплазменную балансировку с точностью до десятков ангстрем. К механической обработке добавилась физическая.

Наконец, четвертый этап развития гироскопии — это появление микроэлектромеханических систем, МЭМС, физические принципы работы которых такие же, как и у больших гироскопов, но изготавливаются они на основе технологий обработки кремния — тех же самых, что используются при изготовлении микросхем и сверхбольших интегральных схем (СБИС). В 1964 году компания Westinghouse выпустила первую серийную МЭМС — резонансный затворный транзистор. А английская компания Silicon Sensing произвела первый МЭМС-гироскоп в 1985 году. В переплетении спиралей развития физики и технологий механической обработки материалов появилась спираль электронных технологий.

Что такое гироскоп: теоретический экскурс в физику

Для начала, давайте разберёмся, как гироскоп появился на свет и чем он является в классическом научном понимании. Первый полноценный образец аппарата был представлен в 1817 году немецким учёным-астрономом Иоганном Боненбергом. Термин же «гироскоп» (от греческих слов «круг» и «смотреть») был внедрён французским исследователем Жаном Фуко в 1852 году. Визуально герой нашего обзора похож на схематичный макет, изображающий вращение как планеты вокруг своей оси, так и её спутников (недаром открытие имеет астрономические «корни»). В центре прибора расположен элемент, близкий по внешнему виду к простому волчку, а вокруг него с определённой скоростью движутся в нескольких плоскостях два или более колец.

[show/hide]

Принцип данного изобретения состоит в следующем: во время вращения «волчок» сохраняет постоянное положение центральной оси, пока не испытает различные действия со стороны внешних сил. Следовательно, вы можете использовать в качестве объекта, расположенного в центре, любое твёрдое тело, точно определяя его положение в пространстве.  Эта функция, в первую очередь, полезна при навигации, поэтому наиболее широкую популярность гироскоп приобрёл в авиации, судоходстве, а также космической отрасли. 

как сделать гироскоп своими руками видео Видео YouTube

1 лет назад

Добро пожаловать на моё видео. В сегодняшнем видео я покажу вам как сделать гироскоп из спинера (ааааааа!!…

6 меc назад

Как сделать гироскоп из диска и свинца? Эксперимент физика /How to make a gyroscope? Не забудь подписаться на мой кана…

9 меc назад

Возможно ли сделать гироскоп своими руками в домашних условиях? Конечно! В данном видеоролике я покажу,…

2 лет назад

ГИРОСКОП_ИЗ_ЖЁСТКОГО_ДИСКА. #КАК_СДЕЛАТЬ_ГИРОСКОП_В_ДОМАШНИХ_УСЛОВИЯХ_своими_руками. #DIY_CAM В этом обзоре…

5 меc назад

Аттракцион Гироскоп сделанный по картинке, не было чертежей была идея.

4 меc назад

Очень интересный эксперимент- как поведет себя плавающий гироскоп? А так же интересные эффекты по ходу…

4 лет назад

Гироскоп он же маховик, удивительное устройство, Homemade Gyroscope flywheel, супермаховик. Гироскопический момент,…

5 лет назад

Как работает гироскоп Gyroscope, электрофорная машина, двигатель Стирлинга. Gyroscopic Precession. Занимательная физика….

5 лет назад

Подписаться Вконтакте: http://vk.com/simplescience Опыт демонстрирует, как при быстром вращении любой предмет может…

2 лет назад

Дни, Жизнь, Суть. Веб-сайты: http://www.dnilife.ru/ http://www.alibabaru.com/ http://www.prikolis.net/

2 лет назад

Гироскоп сделан из обычного HDD от компьютера, точнее 4 самих диска объединённых в один толщиной в 5,3мм. Запит…

2 лет назад

Этот ролик обработан в Видеоредакторе YouTube (https://www.youtube.com/editor)

8 лет назад

механический,ракетный гироскоп.( с рычажками по осям X , Y ).если кому нужна инструкция по сборке героскопа,пи…

2 лет назад

что можно сделать из hdd На видео я покажу вам Как сделать бесплатный Гироскоп из HDD своими руками — как сдела…

4 меc назад

Как просто сделать дома безопасный электрический гироскоп и один забавный эксперимент с ним. Этот и подобн…

2 лет назад

В этом видео делаем простой гироскоп из диска. Для этого нам понадобится: диск от старого «винчестера», CD-дис…

Как работает?

Кистевой тренажер функционирует при помощи интенсивно вращающегося ротора, помещенного внутрь пластикового корпуса в виде сферы. Осуществляя вращательные движения кистью, человек придает ротору ускорение. Чем больше оборотов набирает элемент, тем сильнее воздействие на суставы противоположно направленных сил.

После запуска ротора осевые направляющие устройства перемещаются по верхнему и нижнему пазу. Возникающее трение ускоряет либо замедляет передвижение внутреннего гироскопа. При максимальных оборотах требуется приложить значительное усилие для удержания прибора. Определяющим фактором эффективности тренировок является именно сила трения, поэтому не рекомендуется дополнительно смазывать рабочие элементы.

История

Гироскоп, изобретённый Фуко (построил Дюмолен-Фромент, 1852)

До изобретения гироскопа человечество использовало различные методы определения направления в пространстве. Издавна люди ориентировались визуально по удалённым предметам, в частности, по Солнцу. Уже в древности появились первые приборы, основанные на гравитации: отвес и уровень. В средние века в Китае был изобретён компас, использующий магнетизм Земли. В Древней Греции были созданы астролябия и другие приборы, основанные на положении звёзд.

Гироскоп изобрёл Иоанн Боненбергер и опубликовал описание своего изобретения в 1817 году. Однако французский математик Пуассон ещё в 1813 году упоминает Боненбергера как изобретателя этого устройства. Главной частью гироскопа Боненбергера был вращающийся массивный шар в кардановом подвесе. В 1832 году американец Уолтер Р. Джонсон придумал гироскоп с вращающимся диском. Французский учёный Лаплас рекомендовал это устройство в учебных целях. В 1852 году французский учёный Фуко усовершенствовал гироскоп и впервые использовал его как прибор, показывающий изменение направления (в данном случае — Земли), через год после изобретения маятника Фуко, тоже основанного на сохранении вращательного момента. Именно Фуко придумал название «гироскоп». Фуко, как и Боненбергер, использовал карданов подвес. Не позже 1853 года Фессель изобрёл другой вариант подвески гироскопа.

Преимуществом гироскопа перед более древними приборами являлось то, что он правильно работал в сложных условиях (плохая видимость, тряска, электромагнитные помехи). Однако вращение гироскопа быстро замедлялось из-за трения.

Во второй половине XIX века было предложено использовать электродвигатель для разгона и поддержания вращения гироскопа. Впервые на практике гироскоп был применён в 1880-х годах инженером Обри для стабилизации курса торпеды. В XX веке гироскопы стали использоваться в самолётах, ракетах и подводных лодках вместо компаса или совместно с ним.

Как узнать о наличии в смартфоне гироскопа

В 2019 году трудно найти человека, у которого бы не было мобильного средства связи. Но думаем, что каждый из наших читателей хотел бы знать, есть ли в его гаджете подобное оборудование. Для этого существует два наиболее распространённых способа:

  1. Найти на официальном сайте производителя характеристики вашего электронного помощника и прочитать в них соответствующий раздел.
  2. Если на сайте отсутствует интересующая нас информация (именно отсутствуют сведения, а не указано, что гироскоп не установлен в нашем устройстве), необходимо воспользоваться сторонними программами, которые анализируют работу основных и вспомогательных модулей системы. Лучшим выбором среди всего многообразия предложений является знаменитая программа AnTuTu Benchmark либо более узкоспециализированный продукт Sensor Sense.

Гироскоп в телефоне — что это за датчик?

Здравствуйте. Практически любой смартфон, выпущенный после 2010 года, оснащается разными полезными сенсорами. Сегодня хочу рассказать про гироскоп в телефоне. Что это за датчик, для чего нужен, и как включить?

Дополнительные возможности гаджета

Ранее я рассказывал о датчиках Холла, приближения. Помимо них девайс может иметь акселерометр, температурный сенсор, магнитный и т.д. Все эти микросистемы позволяют существенно расширить функционал устройств, чтобы их можно было использовать в качестве строительного уровня, компаса, термометра, измерителя расстояний до объектов.

Стоит отметить, что многие путают понятие «G-sensor» и «гиродатчик», или же считаю, что это одно и то же. Несмотря на похожий принцип действия, всё же, это совершено разные вещи.

Гироскоп является сложным приспособлением, состоящим из нескольких обручей, закрепленных на подставке. А внутри них располагается подвижный диск, реагирующий на изменение вектора гравитационной силы.

На самом деле, в компактных гаджетах применяется чуть другой механизм, габариты которого не превышают десяти миллиметров, а высота – около 3 мм.

Для чего нужен гироскоп в смартфоне?

Этот датчик позволяет определять пространственное положение телефона, относительно 3-х плоскостей (вспоминаем школьный курс геометрии – оси X, Y и Z). А вот акселерометр предназначен для измерения направления ускорения, что полезно для автоматического поворота изображения на экране.

Гиродатчик улавливает даже самые незначительные движения в любом направлении – наклоны устройства, его повороты. Но заем это нужно? К слову, впервые этот сенсор начали использовать в Айфонах, владельцы которых сразу же ощутили преимущества. Самый простой пример – это возможность принять входящий звонок («взять трубку»), просто встряхнув смартфон. Также, можно с легкостью листать картинки в галерее, переворачивать страницы в процессе чтения книг, переключаться с одного трека да другой в музыкальном проигрывателе.

Но самым важным аспектом использования гироскопа является игровая индустрия. То есть, некоторые игры позволяют управлять персонажем с помощью поворотов корпуса. Особенно это актуально для гоночных симуляторов, где смартфон превращается в руль, а если его наклонять вперед/назад, то можно таким образом увеличивать скорость/тормозить.

Существует огромное количество интересных игр, которые датчик гироскоп превращает в настоящие шедевры, увлекающие не на один час. Я не буду перечислять их в этом посте, думаю, Гугл поможет Вам найти интересные варианты.

Как узнать, есть ли на телефоне гироскоп?

В случае со смартфонами iPhone можно запросто ответить на этот вопрос. У всех моделей версии 4 и выше этот датчик присутствует. А вот для устройств на базе Андроид ситуация чуть запутаннее, ведь производителей намного больше. Проверить можно двумя способами:

  • Ознакомившись с детальными характеристиками на официальном сайте (или в комплектной документации);
  • Установить любое приложение, которое тестирует возможности девайса. Лучшими утилитами являются Aida64 и AnTuTu. Но лично мне больше нравиться софт Sensor Kinetics, который специализируется на проверке работоспособности всех датчиков.

Гироскоп в часах и в фитнес-браслете

Гироскоп в часах – это один из важнейших элементов взаимодействия с миром. Когда вы поднимаете руку с носимым устройством, и в нем включается дисплей – это работает он, родимый. Когда новейшие Apple Watch распознают, что владелец упал и лежит без движения, и вызывают 911 – за спасение своей жизни хозяин должен сказать спасибо этому датчику. Также гироскоп отвечает за фитнес-функции, которые есть во всех современных моделях умных часов.

Он же помогает умному трекеру отследить, как вы ворочаетесь во сне, и оценить качество вашего сна. А более тонкое определение движений помогает распознавать разные виды спорта, которыми вы занимаетесь. Именно гироскоп в фитнес-браслете определяет количество сделанных вами шагов, по тому, как меняется ваше положение во время шага.

Различия между гироскопом и акселерометром – такие разные «братья»

Прежде чем перейти к дальнейшему анализу героя нашего обзора, стоит упомянуть о «родственном» чипе, который встречается в телефонах даже чаще гироскопа – об акселерометре. Его основная функция – измерение ускорения относительно точки, в которой изначально был расположен объект. В этом и состоит главное отличие двух популярных чипов. Но давайте рассмотрим различия более подробно: 

АкселерометрГироскоп
Измеряет расстояние, на которое был перемещён прибор в пространствеРассчитывает угловое отклонение тела в трёх плоскостях
Необходим для расчёта размеров, но бесполезен при вращении и перемещении самого гаджетаВажен для измерений, связанных с вращением и углами, но не измеряет расстояние

Основные функции гироскопа в современных смартфонах

Благодаря использованию гиродатчиков в смартфонах производители позволили воспользоваться рядом новых возможностей. Вне зависимости от того, в каком именно аппарате установлен микрочип, владелец непременно отметит функционал.

Например, раньше для того, чтобы ответить на важный звонок, необходимо было нажимать на кнопку или коснуться экрана. Теперь, всего лишь встряхнув телефон, вы можете начать разговор. Кроме того, гироскоп дает возможность смотреть фотографии, интересные изображения, перевернуть страницу в электронной книге. В аудиоплеерах перед вами появляется возможность выбрать другую песню, не касаясь при этом никаких кнопок.

Гиродатчики невероятно удобны в калькуляторах. При портретном использовании появляется возможность справиться с минимальным количеством функций – умножить, поделить, вычесть или сложить.

Если владелец перевернет телефон на 90 градусов, встроенный в телефоне калькулятор получит ряд дополнительных возможностей. По сути, перед ним появится настоящий инженерный калькулятор. И что самое главное – не нужно каждый раз тратить время на поиск и выбор нужной функции в меню настроек – система самостоятельно определяет, когда необходимо переключиться на инженерную версию, а когда – вернуться обратно на обычную.

Может показаться, что гироскоп отвечает только за выполнение обычных функций. На самом деле, это далеко не так

Разработчики программного обеспечения также обратили внимание на возможности гиродатчиков

Некоторые операционные системы предусматривают возможность повторного поиска устройств, в которых включен Bluetooth. Микрочипы дают пользователю возможность пользоваться специфическими программами, посредством которых определяется уровень и угол наклона объекта. Поэтому если вы увидите строителя, который измеряет угол размещения тех или иных предметов дома с помощью айфона, не стоит удивляться.

Гироскопы очень удобны, если владельцу смартфона необходимо определить местность, в которой находится человек. Вам может показаться, что за такую функцию отвечает только GPS-датчик, но на самом деле, это не так.

Сейчас GPS-навигатор самостоятельно подсчитывает текущие координаты местонахождения, а гироскоп определяет направление, в которую повернут человек в режиме реального времени. К примеру, если вы находитесь на открытой местности, где нет дорог, но вам надо добраться до ближайшего населенного пункта, достаточно повернуться лицом к нему – и на экране вы сможете увидеть, куда сможете прийти, если постоянно шагать прямо. Наоборот, отвернувшись спиной к требуемому населенному пункту, вы заметите и это.

Наличие подобных помощников делает ориентирование на незнакомой местности куда более простым. Таким образом, гиродатчик является незаменимым элементом смартфона, используемого людьми, которым нравятся активные виды отдыха.

Естественно, дело не обходится без минусов. Некоторые владельцы телефонов, где присутствует гироскоп, предпочитают отключать его. Так, например, некоторые приложения могут медленно реагировать на изменения в текущем положении в пространстве. Кроме того, если вы лежа читаете книгу, перевернувшись на бок, гиродатчик сразу же укажет программе на необходимость изменения ориентации страницы. Как результат, вы можете столкнуться с рядом неудобств.

Специализированные самолетные гироскопы

Для применения в самолетах с целью стабилизации крена начали выпускать специализированные гироскопы. От обычных они отличаются тем, что имеют еще один канал внешней команды.

При управлении каждого элерона отдельным серво, самолетчики с компьютерной аппаратурой задействуют функцию флаперонов. Микширование происходит на передатчике. Однако контроллер самолетного гироскопа на модели автоматически определяет синфазное отклонение обоих каналов элеронов и не мешает ему. А противофазное отклонение задействуется в петле стабилизации крена — в ней присутствуют два сумматора и один датчик угловой скорости. Других отличий нет. Если элероны управляются от одного серво, то специализированный самолетный гироскоп не нужен, сгодится и обычный. Самолетные гироскопы делают фирмы Hobbico, Futaba и другие.

Касаясь применения гироскопов на самолете, нужно отметить, что нельзя использовать режим Heading Hold на взлете и посадке. Точнее, в тот момент, когда самолет касается земли. Это потому, что когда самолет находится на земле, он не может накрениться или повернуть, поэтому гироскоп выведет рули в какое-нибудь крайнее положение. А при отрыве самолета от земли (или сразу после посадки), когда модель имеет большую скорость, сильное отклонение рулей может сыграть злую шутку. Поэтому настоятельно рекомендуется использовать гироскоп на самолетах в стандартном режиме.

В самолетах эффективность рулей и элеронов пропорциональна квадрату скорости полета самолета. При широком диапазоне скоростей, что характерно для сложного пилотажа, необходимо компенсировать это изменение регулированием чувствительности гироскопа. Иначе при разгоне самолета система перейдет в автоколебательный режим. Если же задать сразу низкий уровень эффективности гироскопа, то на малых скоростях, когда он особенно нужен, от него не будет должного эффекта. На настоящих самолетах такое регулирование делает автоматика. Возможно, скоро так будет и на моделях. В некоторых случаях переход в автоколебательный режим органа управления полезен — при очень низких скоростях полета самолета. Многие наверное видели, как на МАКС-2001 «Беркут» С-37 показывал фигуру «харриер». Переднее горизонтальное оперение при этом работало в автоколебательном режиме. Гироскоп в канале крена позволяет делать самолет «несваливаемым на крыло». Подробнее о работе гироскопа в режиме стабилизации тангажа самолетов можно почитать в известной монографии И.В.Остославского «Аэродинамика самолета».

Как проверить гироскоп в телефоне

Трудно найти смартфон, в которым бы отсутствовал датчик для определения положения устройства в пространстве. Гироскоп не нужно как-то активировать в настройках, а вот проверить его работоспособность лишним не будет. Легче всего это сделать через запуск видео в 360 градусов на YouTube.

Developer:

Price:
Free

Для этого нужно выполнить следующие действия:

  1. Откроем мобильное приложение YouTube.
  2. В поиске введём запрос «360 градусов».
  3. Запустим любое видео, поддерживающее просмотр в режиме 360 градусов.
  4. Попробуем повернуть телефон. Если изображение изменяется относительно угла наклона, то гироскоп работает корректно. В том случае, когда ничего не происходит, убедитесь в активации автоповорота экрана.

Таким же образом можно запустить игру и попытаться управлять персонажем. Если всё работает корректно, то значит гироскоп исправен. А вот для более точных тестов необходимо воспользоваться специальным приложением. В качестве примера рассмотрим работу утилиты Sensor Box For Android.

Developer:

Price:
Free

Установим приложение из Google Play, а после выполним рекомендации инструкции:

  1. Переходим во вкладку «Sensor Box».
  2. Нажимаем по пункту «Accelerometer Sensor».
  3. Теперь поворачиваем телефон и следим за шариком на экране. Если объект на экране синхронно передвигается при наклоне телефона, то значит, что с гироскопом или акселерометром всё в порядке. Также можно нажать по строке «Hardware», где будет указана информация об установленном датчике.

При желании можно установить другое приложение, например, AnTuTu Benchmark или AIDA64, и провести полную проверку смартфона.

Developer:

Price:
Free

Например, в случае использования AIDA64, нужно запустить приложение и перейти в раздел «Датчики». Здесь вы получите информацию об установленных комплектующих, где и будет указаны данные о гироскопе.

Подводя итоги отметим, что гироскоп – важный датчик, позволяющий системе определять положение телефона в пространстве. Без него было бы невозможно активировать автоповорот экрана, просматривать видео в очках виртуальной реальности и корректно пользоваться навигацией.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации