Андрей Смирнов
Время чтения: ~23 мин.
Просмотров: 0

Электрические схемы бесплатно. схемы емкостного реле для сигнализации своими руками

Выбор твердотельного реле

При покупке ТТР стоит учесть ряд особенностей устройства, что поможет сделать правильный выбор.  Для сравнения классические устройства способны выдерживать перегрузки, возникающие на небольшое время и не превышающие полутора или двукратного номинального тока.

Если правильно подойти к вопросу эксплуатации, хватит обычной чистки контактов.

В случае с твердотельными реле ситуация обстоит хуже. Если номинальный параметр тока превышен в 1,5 и более раз, прибор можно выбросить. Вот почему при выборе ТТР для питания активной нагрузки стоит брать запас по току в два-четыре крата.

Если изделие планируется применять в цепи пуска АД, этот показатель стоит увеличить в шесть-десять раз. При таком подходе придется переплатить, но зато повышается срок службы подключенного прибора и надежность его работы.

Схема подключения ёмкостного уровнемера

Емкостной датчик уровня для топливных или стационарных топливных баков может подключаться по цифровой или аналоговой схеме с использованием изолированной CAN-шины и контроллера. Также используется двухпроводная схема подключения, позволяющая непрерывно контролировать уровень жидкости. Кроме того, отдельные модели можно монтировать с использованием трубной насадки или с кабельным пробником.

Поскольку емкостные уровнемеры измеряют емкость конденсатора, а изолятором-диэлектриком служит продукт измерения, то для точного проведения работ приборы можно устанавливать только в емкости с металлическими стенками, причем та из стенок, куда будет выполняться крепление должна быть расположена строго параллельно зонду.

После подключения выполняют контрольный запуск, проводят калибровку на абсолютно пустой и полностью заполненной емкости.

В предлагают емкостные датчики контроля уровня топлива с полным описанием и инструкцией по подключению (представлены схемы в зависимости от интерфейса).

Уровнемер топлива с интерфейсом CAN Длина штока: 800 мм / 1600 мм Чувствительность: > 2 единиц на мм, обычно 15 единиц на мм Фильтры цифровой интеграции: Настраиваемая константа времени и коэффициент интеграции, скорость изменения выходного сигнала 15…240 мм/мин

Инструкция для самостоятельной сборки твердотельного реле на 12 В

Если вы намерены собрать твердотельное реле, то вам понадобится соорудить цепочку с симистором, схемой управления и гальванической развязкой (по типу симисторной оптопары).

В качестве иллюстративного образца предлагается воспользоваться следующими деталями:

  • симисторной оптопарой MOC3083 (VD1);
  • симистором с изолированным анодом BT139-800 16A (V1 от Philips);
  • сопротивлением для ограничения тока через светодиод MOC3083 (R1 750Ом 0,5Вт);
  • светодиодом индикации АЛ307А (LD1);
  • резистором на управляющий электрод симистора 160 Ом (R2 , 0.125Вт).

  1. Для самостоятельной сборки твердотельного реле понадобится в первую очередь металлическая (лучше всего из алюминия) быстро проводящая тепло подложка. Конкретные габариты подложки (размеры и толщина) зависят от того, какое количество тепла нужно будет отводить от симистора (учитывайте также, что и сама подложка может располагаться на поверхности из металла).
  2. После потребуется опалубка под заливку. Она должна быть таких размеров, чтобы вместить все компоненты устройства. Под опалубку пойдёт любая подходящих габаритов пластиковая деталь.
  3. Клеевым пистолетом опалубка скрепляется с подложкой. Герметизируются все имеющиеся щели.
  4. Размещается предварительно спаянная и протестированная схема. Учтите, что не всегда можно сразу же точно определить положение выводов симистора. Чтобы уточнить этот момент следует соединить тестер на мегаомах с выходными концами симистора. Если симистор открывается, то уровень сопротивления вместо десятков мегаом снизится до единиц килоом.
  5. Между спинкой корпуса симистора и поверхностью подложки необходима прослойка из теплопроводной пасты (КПТ-8). Ранее не изолированный анод симистора также необходимо отгородить изоляционной прокладкой. В любом случае, ни одна составляющая схемы не должна иметь прямого контакта с металлической подложкой.
  6. Вновь вооружившись клеевым пистолетом нужно скрепить корпус симистора с подложкой.
  7. Уложить все прочие составляющие схемы, продолжая крепить их так, чтобы они не контактировали с подложкой.
  8. Залить форму компаундом.

Комментарии

Как работает такой измеритель

По сути дела, подобный сенсор представляет собой конденсатор. На определении его характеристики базируется работа измерителя и контроль параметров. Поэтому вполне к месту будет вспомнить о том, что такое конденсатор.

Про конденсатор, его характеристики

Как известно, емкость конденсатора определяется формулой

С=Ɛ×Ɛ0×S/d

Где:

  • Ɛ0 — диэлектрическая постоянная;
  • Ɛ — относительная диэлектрическая проницаемость среды между пластинами;
  • d — зазор между обкладками;
  • S — площадь обкладок.

В этой формуле три переменные величины — диэлектрическая проницаемость Ɛ, площадь S обкладок конденсатора и зазор между обкладками d. Изменение любой из них приведет к изменению емкости, а отслеживание колебаний позволит контролировать характеристики среды или другого параметра.

Принцип работы емкостного измерителя

Самое простое техническое решение — включить измерительный сенсор во времязадающую цепь генератора. Не вдаваясь в тонкости схемотехники, можно сказать, что принцип работы любого емкостного датчика тем или иным образом связан с изменением параметров генератора. Это происходит из-за колебаний емкости конденсатора, что приводит к генерации им колебаний другой частоты.

Таким образом, отслеживая ее значение на выходе измерителя, можно оценивать  изменения контролируемого параметра. Конечно, в каждом конкретном случае схемотехническое решение может быть разным. Во многом оно будет зависеть от параметра конденсатора, на который оказывается воздействие со стороны внешней среды.

Это может быть изменение зазора между обкладками конденсатора из-за их сближения или удаления. Или при заполнении резервуара другой средой, например водой, изменится значение диэлектрической проницаемости. Или обкладки конденсатора после внешних воздействий будут располагаться друг относительно друга по-разному.

Любое подобное воздействие вызовет изменение значения емкости конденсатора, а значит, повлияет на работу схемы. Например, емкостные датчики уровня контролируют степень заполнения резервуара или бункера. Зная зависимость между уровнем жидкости и емкостью конденсатора, можно определить, насколько заполнен бак.

Хотя надо отметить, что могут применяться и другие способы обработки сигналов датчика. Их достаточно много, выбор того или иного зависит от конкретных условий. Современный уровень развития электроники позволяет получать обработанный сигнал в виде цифрового кода.

Еще один метод измерения емкости — использование аналого-цифровых преобразователей. Микроконтроллеры вполне могут справиться подобной задачей. В этом случае значительно упрощается измерительная часть приборов на их основе.

Принципиальная схема

Прибор, схема которого изображена на рисунке, имеет дальность обнаружения человека не менее 1.3 м, работает от автономного источника питания (батареи) напряжением 3,2…10 В, потребляя ток не более 2,6 мА.

ВЧ генератор собран на транзисторе VТ7. Его частота стабилизирована кварцевым резонатором ZQ1. Сигнал генератора поступает на колебательный контур L1C16 с антенной-датчиком WA1, который должен быть настроен на частоту, лежащую немного ниже частоты генератора.

Наилучшая чувствительность достигается, когда напряжение на контуре составляет 70…90 % максимума, достигаемого при резонансе. Применением конденсатора С16 с оптимальным значением ТКЕ можно добиться того, что напряжение не будет выходить за указанные пределы в широком интервале температуры. Напряжение с контура поступает на амплитудный детектор, собранный на полевом транзисторе VТ10.

Высокое входное сопротивление этого транзистора очень слабо шунтирует контур, что обеспечивает его высокую добротность и хорошее подавление помех. Детектирование происходит за счет работы транзистора на нелинейном начальном участке характеристики.

Рис. 1. Принципиальная схема чувствительного емкостного реле на транзисторах.

В цепи истока транзистора VТ2 имеется двузвенный фильтр нижних частот. Он сглаживает высокочастотные пульсации продетектированного напряжения и выделяет возникающий при движении объекта вблизи антенны WA1 полезный сигнал инфранизкой частоты. Переменный резистор R31 — регулятор чувствительности реле.

С выхода детектора сигнал поступает на полосовой усилитель инфранизкой частоты на транзисторах VТ2, VТ5, VT6, VТ8. Нижняя граница его полосы пропускания определяется емкостью разделительных конденсаторов С2, С3, С6, С8. Верхняя — параметрами цепей отрицательной обратной связи C5R8 и C13R21.

Поскольку каскады усилителя охвачены стабилизирующей их. режимы отрицательной обратной связью по постоянному напряжению через резисторы R8 и R21, не потребовалось включать стабилизирующие резисторы в цепи эмиттеров транзисторов VТ5 и VТ8. В усилителе инфранизкой частоты эти резисторы пришлось бы зашунти-ровать конденсаторами емкостью в десятки тысяч микрофарад.

Для ускорения переходных процессов при включении реле и быстрого приведения усилителя в рабочее состояние служат резистивные делители напряжения R1R2 и R14R12. При нажатии на кнопку SB1 они обеспечивают ускоренную зарядку разделительных конденсаторов до необходимого напряжения. После включения питания необходимо нажать на эту кнопку и удерживать ее несколько секунд.

Транзистор VT9 образует вместе с VT6 и VT8 пороговое устройство. В исходном состоянии транзистор VT9 открыт, а при уменьшении под действием усиливаемого сигнала напряжения на базе приблизительно до 0,6 В он закрывается. Цепь C18R28 удерживает устройство в таком состоянии около 5 с (при указанных на схеме номиналах ее элементов). На выходе формируется сигнал тревоги — импульс высокого логического уровня указанной длительности.

Для предотвращения подачи ложного сигнала при включении питания служит транзистор VТ11. Он открыт, пока конденсатор С21 заряжается через резистор R33 и эмиттерный переход транзистора. Контакты SB 1.4 обеспечивают быструю разрядку конденсатора С21 при нажатии на кнопку SB1 и повторную блокировку сигнала тревоги на заданное время после ее отпускания.

Конструкция и детали емкостных сенсорных датчиков

Когда я начал разрабатывать сенсорную систему подачи воды в биде, то наиболее трудной задачей мне казалась разработка емкостного датчика присутствия. Обусловлено это было рядом ограничений по установке и эксплуатации. Не хотелось, чтобы датчик был механически связан с крышкой унитаза, так как ее периодически надо снимать для мойки, и не мешал при санитарной обработке самого унитаза. Поэтому и выбрал в качестве реагирующего элемента емкость.

Сенсорного датчика присутствия

По выше опубликованной схеме сделал опытный образец. Детали емкостного датчика собраны на печатной плате, плата размещена в пластмассовой коробке и закрывается крышкой. Для подключения антенны в корпусе установлен одноштырьковый разъем, для подачи питающего напряжения и сигнала установлен четырех контактный разъем РШ2Н. Соединена печатная плата с разъемами пайкой медными проводниками в фторопластовой изоляции.

Сенсорный емкостной датчик собран на двух микросхемах КР561 серии, ЛЕ5 и ТМ2. Вместо микросхемы КР561ЛЕ5 можно применить КР561ЛА7. Подойдут и микросхемы 176 серии, импортные аналоги. Резисторы, конденсаторы и светодиоды подойдут любого типа. Конденсатор С2, для стабильной работы емкостного датчика при эксплуатации в условиях больших колебаниях температуры окружающей среды нужно брать с малым ТКЕ.

Установлен датчик под площадкой унитаза, на которой установлен сливной бачек в месте, куда в случае протечки из бачка вода попасть не сможет. К унитазу корпус датчика приклеен с помощью двустороннего скотча.

Антенный датчик емкостного сенсора представляет собой отрезок медного многожильного провода длинной 35 см в изоляции из фторопласта, приклеенного с помощью прозрачного скотча к внешней стенке чаши унитаза на сантиметр ниже плоскости очка. На фотографии сенсор хорошо виден.

Для настойки чувствительности сенсорного датчика необходимо после его установки на унитаз, изменяя сопротивление подстроечного резистора R3 добиться, чтобы светодиод HL2 погас. Далее положить руку на крышку унитаза над местом нахождения сенсора, светодиод HL2 должен загораться, если руку убрать, потухнуть. Так как бедро человека по массе больше руки, то при эксплуатации сенсорный датчик, после такой настройки, будет работать гарантировано.

Конструкция и детали емкостного сенсорного включателя

Схема емкостного сенсорного включателя имеет больше деталей и для их размещения понадобился корпус большего размера, да и по эстетическим соображениям, внешний вид корпуса, в котором был размещен сенсорный датчик присутствия не очень подходил для установки на видном месте

Внимание на себя обратила настенная розетка rj-11 для подключения телефона. По размерам она подходила и имела хороший внешний вид. Удалив из розетки все лишнее, разместил в ней печатную плату емкостного сенсорного выключателя

Удалив из розетки все лишнее, разместил в ней печатную плату емкостного сенсорного выключателя.

Для закрепления печатной платы в основании корпуса была установлена короткая стойка и к ней с помощью винта прикручена печатная плата с деталями сенсорного выключателя.

Датчик емкостного сенсора сделал, приклеив ко дну крышки розетки клеем «Момент» лист латуни, предварительно вырезав в них окошко для светодиодов. При закрывании крышки, пружина (взята от кремневой зажигалки) соприкасается с латунным листом и таким образом обеспечивается электрический контакт между схемой и сенсором.

Крепится емкостной сенсорный включатель на стену с помощью одного самореза. Для этого в корпусе предусмотрено отверстие. Далее устанавливается плата, разъем и закрепляется защелками крышка.

Настройка емкостного выключателя практически не отличается от настройки сенсорного датчика присутствия, описанного выше. Для настойки нужно подать питающее напряжение и резистором отрегулировать, чтобы светодиод HL2 загорался, когда к датчику подносится рука, и гас, при ее удалении. Далее нужно активировать сенсорный датчик и поднести и удалить руку к сенсору выключателя. Должен мигнуть светодиод HL2 и загореться красный светодиод HL3. При удалении руки красный светодиод должен продолжать светиться. При повторном поднесении руки или удалении тела от датчика, светодиод HL3 должен погаснуть, то есть выключить подачу воды в биде.

Передняя панель

Пример изготовления датчика

Световой датчик состоит из источника света и приемника светового излучения. В домашних условиях в качестве источника можно применить лазерную указку. Выбор может упасть также на светодиоды, что уменьшит расстояния между источником и приемником света. В охранной сигнализации источником может быть инфракрасный диод, что сделает устройство менее заметным.

Принципиальная схема приемника светового прибора представлена на изображении:

Что надо иметь для самостоятельного изготовления

Для практической реализации представленной схемы понадобятся следующие основные инструменты и комплектующие.

  • Паяльник. Мастер должен уметь работать с этим инструментом.
  • Мультиметр — для измерения электрических параметров собираемой схемы.
  • Бокорезы, пинцет. Эти инструменты необходимы для выполнения проводки и работы с мелкими электронными комплектующими.
  • Транзистор с фотоэлементом. Из него следует изготовить фотоэлемент — собственно основной чувствительный элемент датчика. Для этого подойдет фототранзистор с корпусом как показано на изображении:С помощью бокорезов освободить транзистор от крышки. Получится открытая поверхность кристалла фотоэлемента (смотреть изображение), которая будет реагировать на попадание света.
  • Операционный усилитель для увеличения параметров сигнала при использовании внешних приемников для подачи сигнала (радиоприемник или другой вид информирования о случившемся событии). Выглядит операционный усилитель как показано на изображении:
  • Конденсатор, резисторы, реле. В качестве реле подойдет РЭС55, смотреть изображение:
  • Драйвер или блок питания для подачи напряжения (можно бывший в употреблении, но рабочий от 4.5 В до 12 В)

Основные рекомендации и порядок сборки

  • Из подготовленных деталей выполняется несложная схема, приведенная выше.
  • Производится подключение с помощью паяльника к блоку питания. Собранная плата выглядит, как показано на изображении:
  • Собранную схему лучше разместить в каком-нибудь корпусе, подходящем по размеру.

Как работает самодельный датчик света

Источник света направляет излучение на кристалл фотоэлемента транзистора VT1 (смотреть схему), создавая условия аналогичные подаче напряжения на его базу. В таком случае полупроводник откроется, а конденсатор С1 зарядится. Резистор R1 регулирует величину точки срабатывания транзистора и подбирается опытным путем (за базу взято значение 10 кОм). Конденсатор подбирается емкостью 10 мкф.

В тот момент, когда свет перестает падать на фотоэлемент, а это происходит при возникновении преграды в виде человека, конденсатор начнет разряжаться. При этом напряжение в точке А будет постепенно снижаться. Операционный усилитель многократно усиливает сигнал и на выходе можно будет подключить извещатели различного типа.

Анализировать информацию с датчика поможет установка в схему реле. Его подключаем следующим образом: один контакт соединяем с цепью питания, другой заземляем, а третий подключаем к извещателю, например, радиоприемнику, как показано на изображении:

Пока свет попадает на фотоэлемент, питающая цепь реле соединена с корпусом и радио не работает. В отсутствии сигнала от фотоэлемента контакт реле переключается на цепь питания (на изображении 12 В) и радио подает звуковой сигнал.

Измерение изменений

Если вы читали предыдущую статью, то вы знаете, что суть емкостных датчиков прикосновений заключается в изменении емкости, которое происходит, когда объект (обычно палец человека) приближается к конденсатору. Присутствие пальца увеличивает емкость, так как:

  1. вводит вещество (т.е. человеческую плоть) с относительно высокой диэлектрической проницаемостью;
  2. обеспечивает проводящую поверхность, которая создает дополнительную емкость параллельно существующему конденсатору.

Конечно, сам факт того, что емкость изменяется, не особенно полезен. Для того, чтобы на самом деле реализовать емкостной датчик касаний, нам необходима схема, которая может измерять емкость с точностью, достаточной, чтобы идентифицировать увеличение емкости, вызванное наличием пальца. Существуют различные способы сделать это, некоторые довольно просты, другие более сложные. В данной статье мы рассмотрим два основных подхода для реализации емкостного сенсорного функционала: первый основан на постоянной времени RC (резистор-конденсатор) цепи, а второй основан на сдвигах частоты.

Самый простой рецепт рыбы хе

И вот наша первая рецептура — достаточно упрощенная, адаптированная для европейцев. Итак, возьмем следующие ингредиенты:

  • граммов 800 рыбного филе;
  • 1 луковицу;
  • несколько зубков чеснока;
  • немного сахара;
  • 2 ложки соевого соуса;
  • 1 ложку перца молотого;
  • 2 ложки уксуса;
  • немного соли;
  • зелень;
  • стручок острого перца;
  • несколько ложек постного масла.

Принцип работы

Электромагнитное реле, принцип действия которого является общим для любого типа, состоит из следующих элементов:

  1. Основание.
  2. Якорь.
  3. Катушка из витков провода.
  4. Подвижные и закрепленные контакты.

Все детали крепятся на основании. Якорь выполнен с возможностью поворота и удерживается пружиной. Когда на обмотку катушки подается напряжение, по ее виткам протекает электрический ток, создавая электромагнитные силы в сердечнике. Они притягивают якорь, который поворачивается и замыкает подвижные контакты с парными неподвижными. При отключении тока якорь возвращается пружиной обратно. Вместе с ним перемещаются подвижные контакты.

От типовой конструкции отличаются только герконовые реле, где контакты, сердечник, якорь и пружина совмещены в единой паре электродов.

Электромагнитное реле, схема которого изображена ниже, является коммутирующим устройством.

Она типична и в целом показывает, как электрическая энергия преобразуется в магнитную, которая затем преодолевает усилие пружины и перемещает контакты.

Электрические цепи катушки и коммутации ничем не связаны. За счет этого малые токи могут управлять большими. В результате реле электромагнитное является усилителем тока или напряже­ния. Функционально оно включает три основных элемента:

  • воспринимающий;
  • промежуточный;
  • исполнительный.

Первым из них является обмотка, создающая электромагнитное поле. По ней проходит контролируемый ток, при достижении которым заданного порогового значения происходит воздействие на исполнительный элемент — электрические контакты, замыкающие или размыкающие выходную цепь.

Список источников

  • radiobezdna.ru
  • www.syl.ru
  • www.asutpp.ru
  • sovet-ingenera.com
  • samelectrik.ru
  • homius.ru
  • ElektrikExpert.ru
  • lazysmart.ru
  • fornk.ru

Что такое датчик уровня воды «Геркон»

Геркон («герметичный контакт») представляет собой электронное устройство в виде вытянутой стеклянной колбочки с откачанным воздухом, в которой находятся два металлических ферромагнитных контакта. Контакты в обычном состоянии разомкнуты. Они замыкаются и замыкают цепь тогда, когда попадают в магнитное поле.

К преимуществам герконов отнесем:

  • надежность, которая в 100 раз больше, чем у обычных открытых контактов;
  • быстродействие;
  • срок службы, достигающий 5 млрд. срабатываний, намного превышает обычные контакты.

Недостатки:

  • малая коммутируемая мощность;
  • малое число контактных групп в одном баллоне;
  • хрупкость стеклянного баллона;
  • чувствительность к внешним полям.

Преимущества Герконов намного превосходят его недостатки.

Прин

Конструкция

Устройство твердотельного реле — это электронная плата, состоящая из силового ключа, элемента развязки и узла управления. В качестве силовых элементов могут быть использованы:

  • для цепей постоянного тока: транзисторы, полевые транзисторы, составные транзисторы MOSFET или модули IGBT.
  • для управления цепями с переменным напряжением устанавливают симисторные ключи или тиристорные сборки.

В качестве элемента развязки устанавливают оптроны — это устройство состоит из светоизлучающего элемента и фото приемника, разделенных прозрачным диэлектриком. Узел управления представляет собой схему стабилизации напряжения и тока для светоизлучающего элемента в оптроне.

Как видно из схемы, входы управления под номерами 3 и 4, а выход — клеммы 1 и 2. В данной схеме входной сигнал может быть от 70 вольт до 280 переменного напряжения, а напряжение на нагрузке может достигать 480 вольт. Не имеет значения, на каком контакте расположен потребитель, до или после реле.

Условное обозначение твердотельного реле на схеме может выглядеть так (для увеличения нажмите на картинку):

Что касается схемы подключения, в ней аппарат установлен после нагрузки, соединяя его с землей. При таком подключении в случае короткого замыкания на землю, реле исключается из цепочки протекания тока.

Напоследок рекомендуем просмотреть видео, на которых наглядно демонстрируется, как работает твердотельное реле и из чего оно состоит:

Вот мы и рассмотрели назначение, область применения и конструкцию твердотельного реле. Надеемся, предоставленная информация была полезной и понятной!

Наверняка вы не знаете:

  • Для чего нужна релейная защита
  • Как работает магнитный пускатель
  • Системы дистанционного управления освещением

Острая закуска из толстолобика

Классический рецепт салата хе с овощами и толстолобиком отличается от других рыбных блюд особой пикантностью, свежестью, ароматом специй.

Необходимые ингредиенты:

  • 700 г толстолобика;
  • 2 луковицы;
  • 3 крупных зубчика чеснока;
  • 1 большой огурец;
  • 1 болгарский перец;
  • по 20 мл соевого соуса и уксуса;
  • 30 г свежей кинзы;
  • 2 г черного молотого перца;
  • 15 г паприки;
  • 5 г жгучего перца;
  • 5 г кориандра;
  • 5 г кунжутного семени;
  • 10 г соли;
  • масло для обжаривания.

Способ приготовления.

  1. Рыбу чистят, филе отделяют от костей и нарезают средними кусками.
  2. Толстолобика солят, заливают уксусом. Оставляют в прохладном месте на 2 часа.
  3. Лук режут полукольцами, огурец — тонкими ломтиками, сладкий перец — длинными полосками.
  4. Кинзу мелко шинкуют.
  5. Лук обжаривают в масле до золотистого оттенка.
  6. Промариновавшегося толстолобика достают из холодильника, жидкость сливают.
  7. Рыбу смешивают с овощами, пропущенным через пресс чесноком, солью и приправами.
  8. Салат из толстолоба поливают соевым соусом и посыпают кунжутным семенем.
  9. Готовому блюду дают промариноваться в холодильнике еще 2 часа.

Рецепт хе из толстолобика допускает использование других приправ и зелени по желанию

Конструктивные особенности

В основе твердотельного реле лежит электронная плата, в состав которой входит три главных элемента — узлы управления и развязки, а также силовой ключ. В роли силовых элементов применяются такие детали:

  • Для постоянного I — транзисторы полевого типа, простые транзисторы, модульные элементы класса IGBT, а также MOSFET-транзисторы.
  • Для переменного I — сборки на базе тиристоров, а также симисторы.

Развязка цепи обеспечивается оптронами — изделиями, состоящими из излучающего и принимающего свет устройства. Между ними установлен диэлектрик, имеющий прозрачную структуру.

Управляющий узел выполнен в виде стабилизирующей схемы, обеспечивающей оптимальные уровни тока и напряжения для излучающего свет элемента. Напряжение на входе схемы должно быть от 70 до 280 Вольт.

Что касается напряжения нагрузки, его величина — до 480 Вольт. Расположение электроприбора (до или после ТТР) не имеет значения.

Как правило, устройство монтируется после нагрузки с последующим подключением к «земле». При таком варианте схемы удается защитить внутренние элементы от протекания тока КЗ (он потечет через заземляющий провод).

Подключение

Принцип подключения прост. В приборе предусмотрены управляющие входы (на них подается напряжение с четким соблюдением полярности) и выход для подключения нагрузки. Важный момент — качество соединения. Здесь применяется винтовой способ (пайка исключена)

Чтобы избежать повреждения ТТР, важно исключить попадание на контакты пыли, а также посторонних механических элементов. Стоит предусмотреть меры, препятствующие негативному воздействию на кожух прибора (во включенном или отключенном состоянии)

После включения запрещено прикасаться к корпусу, который может быть горячим.

Обратите внимание, чтобы ТТР не располагалось вблизи легковозгораемых материалов. Кроме того, в процессе подключения убедитесь, что коммутация выполнена без ошибок

Если после включения изделие набирает температуру выше 60 градусов Цельсия, установите на него радиатор для охлаждения (причины и особенности этой защитной меры рассмотрены выше). Если ничего не предпринять, при достижении 80 градусов Цельсия прибор перестанет работать. Управление осуществляется при помощи цепочки с различными вариантами исполнения.

Электрическая цепь в твердотельным реле.

Завершение работы

Обязательно промойте и высушите кисть, прежде чем использовать другой цвет. Слегка протрите щетку бумажным полотенцем. Если вы видите цвет, оставшийся на нем, то промойте кисть еще раз

Важно, чтобы ворс был полностью сухим, прежде чем вы вновь приступите к рисованию

Внимательно осмотрите картину и посмотрите, нужно ли подправить некоторые места. Гораздо проще сделать это, пока кисть еще сухая. Используйте также зубочистку, смоченную в спирте, чтобы стереть лишнюю краску. А образованные пузырьки можно проколоть иглой или булавкой.

Прочитайте инструкцию на бутылке с краской. Некоторые марки должны сохнуть несколько дней, прежде чем их можно будет использовать. Другим же требуется до 31 дня. Также часть красок обязательно нужно запекать в духовке. В любом случае изделие необходимо оставить на просушку не менее, чем на 48 часов. Если при соприкосновении с краской она покажется липкой, то нужно дать еще немного времени.

Классификация датчиков

Используемые в промышленности способы их производства позволяют поделить все выпускаемые типы датчиков на две большие группы: одноемкостные и двухъемкостные. Последняя разновидность подразделяется на дифференциальные и полудифференциальные. Расмотрим их более подробно.

Одноемкостный прибор. В этом случае схемы емкостных датчиков просты до крайности, так как основной их частью является самый обычный конденсатор с переменной емкостью. К сожалению, даже слегка повышенная влажность и температура оказывают на точность показаний весьма ощутимое влияние. Из-за этого нередко возникают различные неисправности датчиков. Чтобы нивелировать величины таких погрешностей, приходится использовать дифференцированные конструкции.

Двухъемкостный датчик. Собственно, он-то и является такой дифференцированной структурой. Очень часто можно встретить емкостной датчик уровня, изготовленный именно по такой схеме. Эти приборы избавлены от основных недостатков предыдущей модели, но имеют собственные слабые стороны. Наиболее значимым их недостатком является необходимость использования двух-трех экранированных проводов между самим устройством и поверхностью, так как только таким способом можно подавить так называемые паразитные емкости.

Впрочем, на довольно сложные схемы емкостных датчиков в этом случае легко не обращать внимания, так как взамен вы получаете чрезвычайно точный и чувствительный прибор.

Как выполнить настройку (откалибровать) датчик приближения

В тех случаях, если модуль работает некорректно (дисплей не отключается при приближении к голове человека или же тухнет на удалении от неё), потребуется выполнить его регулировку

Для этого важно знать, как откалибровать датчик приближения на Андроид. Решить эту задачу можно встроенными системными средствами, через инженерное меню или через сторонние утилиты

Перед тем, как приступить к калибровке, необходимо отыскать модуль на корпусе смартфона. Чаще всего он размещён в верхней части дисплея, поблизости от передней камеры. Чтобы найти его, следует при звонке отодвинуть мобильный девайс от уха, чтобы загорелся экран, а затем приблизить палец к селфи-камере и провести от неё влево или вправо. Если дисплей отключится, значит, в этом месте расположен необходимый узел.

В ряде случаев работоспособность модуля нарушается из-за попадания пыли. Чтобы исправить такую поломку, достаточно выключить гаджет и тщательно продуть и протереть область вокруг элемента. Далее следует перезапустить девайс и проверить работоспособность. Если проблема не устранена, следует приступить к калибровке.

Возможности системы

Встроенные службы – наиболее простая возможность выполнить калибровку. Для этого нужно перейти в настройки смартфона и в разделе «Экран» или «Специальные возможности» выбрать эту опцию. Далее потребуется следовать подсказкам системы в процессе выполнения операции.

Сначала необходимо убрать все предметы, расположенные перед датчиком, после чего активировать настройку. После этого напротив элемента в нескольких сантиметрах нужно поставить лист бумаги, а затем последовательно приближать его к модулю и удалять от него. Если экран на протяжении этих действий гаснет и снова загорается, значит, калибровка выполнена верно.

Инженерное меню

Провести диагностику модуля и, при необходимости, регулировку можно через инженерное меню. Для этого необходимо:

Выбрать ввод номера и ввести *#*#3646633#*#* или *#*#6484#*#*.

  1. Перейти к проверке комплектующих («Hardware Testing»), откройте раздел «Sensor», затем «Light/Proximity Sensor» (датчик света и приближения).
  2. Чтобы выполнить тестирование, провести сбор сведений модуля («PS Data Collection»).
  3. Кликнуть «Get One Data», когда на экране загорится «0», приблизить ладонь к элементу и повторно нажать «Get One Data».
  4. Если на экране высветится число «255», модуль исправен.
  5. Чтобы провести настройку, нужно выбрать «PS Calibration», затем «Calibration».
  6. Нажать «Calculate min value», при этом модуль должен быть открыт.
  7. Увидев на экране сообщение «Calculate succeed», приблизить на пару сантиметров к экрану бумажный лист и нажать «Calculate Max Value», а затем «Do Calibration».

После этих действий необходимо перезагрузить мобильный девайс.

Стороннее приложение

Ещё один удобный способ провести калибровку модуля – воспользоваться бесплатным сторонним приложением «Датчик приближения. Сброс». Загрузить его можно на Google Play.

Это решение подходит для смартфонов, на которые владелец получил Root-права.

После загрузки и инсталляции необходимо запустить утилиту и выполнить следующие действия:

  1. Кликнуть «Calibrate Sensor».

  1. Закрыть датчик и нажать «Next».

  1. Открыть модуль и перейти к следующему шагу.

  1. Кликнуть «Calibrate», затем — «Confirm».

  1. Нажать «Разрешить», чтобы приложение могло использовать рут-права на телефон.

  1. Дождаться перезагрузки устройства и проверить, как оно функционирует.

Для исправной работы датчика приближения, его необходимо включить в меню телефона и, если возникнет такая необходимость, сделать калибровку встроенными средствами системы, через инженерное меню или с помощью сторонних приложений. Если эти действия не принесли результатов, и модуль по-прежнему работает некорректно, это говорит о неисправности. Узнать, как исправить поломку, можно в статье, посвящённой этой теме.

Схемы, платы, электроника, станки, гаджеты

Поиск

Схема и Конструкция датчика уровня воды

Такое количество проводов стало для меня камнем преткновения и я решил сделать датчик, состоящий из двух проводов, который бы подключался к гибко настраиваемому индикатору. Схему датчика вы можете увидеть на рисунке ниже.

Рис. 1 Датчик уровня жидкости

Здесь всё просто, ряд последовательно подключённых резисторов с изменяемым сопротивлением за счёт столба воды, который выступает в роли импровизированных перемычек. В итоге у нас получается резистор с сопротивлением от 75 кОм до 1-2 кОм (сопротивление воды).

Фактически, датчик был выполнен из отрезка пластиковой трубы, отводом служит пластиковый тройник с переходом на металл, заглушенный латунной пробкой. Технологические варианты соединения элементов вы можете увидеть на фото ниже.

Рис. 2 Фото готового датчика и его конструктивных элементов

Таким образом нет нужды делать кучу отверстий в баке, достаточно одного крепежного отверстия в самом верху бака, что даёт возможность легко монтировать / демонтировать датчик с целью периодической очистки бака от налёта и т.п.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации