Андрей Смирнов
Время чтения: ~22 мин.
Просмотров: 0

Оригами додекаэдр

Содержание

Разные грани — разные формы

Многогранники — это особая сфера геометрии. Они бывают простые — к примеру кубики, которыми дети играют с раннего возраста, — а бывают очень и очень сложные. Простроение развертки многогранников для склеивания считается
достаточно сложной областью конструирования и творчества: нужно не только знать основы черчения, геометрические особенности пространства, но и иметь пространственное воображение, позволяющее оценить правильность решения еще на стадии проектирования. Но и одной фантазией не обойтись. Чтобы сделать развертки не достаточно просто представить, как в конце концов должна выглядеть работа. Нужно уметь правильно ее просчитать, сконструировать, а также грамотно начертить.

Делаем двадцатигранник

Икосаэдр состоит из одинаковых по размеру равнобедренных треугольников. Его можно легко сложить, используя представленную на рисунке 2 развертку. Возьмите прямоугольный лист бумаги. Начертите на нем двадцать одинаковых по размеру и форме треугольников, расположив их в четырех рядах. При этом каждая грань одного будет одновременно являться стороной другого. Полученный шаблон используйте для изготовления заготовки. Она будет отличаться от основы-развертки наличием припусков для склеивания по всем внешним линиям. Вырезав из бумаги заготовку, согните ее по линиям. Формируя из бумаги многогранник, замыкайте крайние ряды между собой. При этом вершины треугольников соединятся в одну точку.

Макеты из бумаги

Макетирование — увлекательное занятие. Оно помогает развить воображение и логическое мышление. Из бумаги делают не только фигуры, но и необычные скульптуры, статуэтки, шестиугольные–двенадцатиугольные предметы, наклонные объекты (например, Пизанскую башню), карандаши, линейки. На фото и картинках можно посмотреть, как выглядят оригинальные поделки из бумаги.

Школьники младших классов или дошколята делают бумажные объемные поделки. Например, предметы из овала — веер, цветы, гусеницы. Для них потребуются овалы и круги разного диаметра. Раскладки склеиваются между собой, получаются трехмерные игрушки.

https://youtube.com/watch?v=U0u0eq9bk84

Корабль

Применяется множество вариантов, как сделать кораблик из бумаги.

Простая схема.

Правильные многогранники

Все фигуры отличаются друг от друга различным количеством граней и их формой. Кроме этого, некоторые модели могут быть сложены из цельного листа (как описано в примере изготовления икосаэдра), другие – только путем сбора из нескольких модулей. Классическими считаются правильные многогранники. Из бумаги их делают, придерживаясь главного правила симметрии – наличия в шаблоне полностью одинаковых граней. Существует пять основных видов таких фигур. В таблице приведены сведения об их названиях, количестве и формах граней:

Название

Кол-во граней

Форма каждой грани

тетраэдр

4

треугольник

гексаэдр

6

квадрат

октаэдр

8

треугольник

додекаэдр

12

пятиугольник

икосаэдр

20

треугольник

Правильные многогранники

Все фигуры отличаются друг от друга различным количеством граней и их формой. Кроме этого, некоторые модели могут быть сложены из цельного листа (как описано в примере изготовления икосаэдра), другие – только путем сбора из нескольких модулей. Классическими считаются правильные многогранники. Из бумаги их делают, придерживаясь главного правила симметрии – наличия в шаблоне полностью одинаковых граней. Существует пять основных видов таких фигур. В таблице приведены сведения об их названиях, количестве и формах граней:

Название

Кол-во граней

Форма каждой грани

тетраэдр

4

треугольник

гексаэдр

6

квадрат

октаэдр

8

треугольник

додекаэдр

12

пятиугольник

икосаэдр

20

треугольник

Ажурная модель

Существует несколько типов оригами-додекаэдров, но сделать эту прозрачную конструкцию из бумажных модулей проще всего. Хорошее задание для детей, желающих познакомиться с азами пространственной геометрии и взрослых, ищущих эффективное средство для снятия стресса. Желательно использовать для игрушки бумагу ками с рисунком, она придаст особый шарм и колорит.

Пошаговая инструкция:

  1. Для создания кусудамы понадобится 30 одинаковых модулей. Их складывают из прямоугольников, имеющих соотношение сторон 3:4. Например, размером 6х8 см, 9х12 см и так далее. Можно брать как одно-, так и двухсторонние листы.
  2. Складываем каждый прямоугольник пополам вдоль длинной стороны. После чего делаем Z-образный сгиб.
  3. Располагаем получившуюся полоску длинной стороной к себе. Загибаем правый нижний угол вверх. Переворачиваем заготовку на 180°. И повторяем действие для правого нижнего угла (другого).
  4. Складываем фигуру по диагонали, как показано на рис 4.
  5. Модули для додекаэдра-кусудамы готовы.

Остаётся соединить их в пространственную композицию. Для этого короткую часть одного модуля вставляем к «карман» длинной части другого. И располагаем так, чтобы внутренние углы и грани обоих элементов совпали.

Аналогичный образом добавляем третий модуль, соединяя его с предыдущими двумя и формируя устойчивый конструктивный узел.

Продолжаем крепить детали друг к другу, пока не получится объёмная фигура.

За счёт необычной бумаги с принтом, получается стильный предмет декора. Чтобы кусудама не распадалась, лучше соединить узловые элементы с помощью клея.

Подробная сборка ажурного додекаэдра представлена и в видео-МК:

Конструкция развертки

Высокое качество обработки обеспечивает конструкция развертки – большое количество режущих кромок обеспечивающих небольшой припуск при снятии металла. Процесс резания осуществляется при вращении и одновременном поступательном движении инструмента вдоль оси обрабатываемого отверстия.

Выше приведены рисунки четырёх типов разверток:

  • а) Ручная с цилиндрическим хвостовиком.
  • б) Машинная с коническим хвостовиком цельная.
  • в) Машинная цельная
  • г) Машинная сборная со сменными режущими элементами.

Инструмент имеет от 6 до 16 зубьев неравномерно (как правило) распределенных по окружности для повышения качества обработки. Рассмотрим конструкцию на примере ручной развертки цельной с хвостовиком цилиндрической формы. Инструмент состоит из трех основных частей – рабочей, шейки и хвостовика. В свою очередь рабочая часть развертки состоит из направляющей, режущей и калибрующих частей, а также обратного конуса. Основную часть процесса выполняет режущая часть, которая у ручного инструмента значительно длиннее, чем у машинного.

Как сделать куб из бумаги?

Куб – правильный многогранник, каждая грань которого представляет собой квадрат

Создание куба состоит из двух этапов: создание развертки и склеивание. фигуры. Для создания схемы вы можете воспользоваться принтером, просто распечатав готовую схему. Либо вы можете самостоятельно с помощью чертежных инструментов нарисовать развертку.

Рисование развертки:

  1. Выбираем размеры квадрата — одной стороны нашего куба. Лист бумаги должен быть шириной не менее 3 сторон этого квадрата и длиной немного более 4 сторон.
  2. Чертим в длину нашего листа четыре квадрата, которые станут боковыми сторонами куба. Рисуем их строго на одной линии, вплотную друг к другу.
  3. Над и под любыми из квадратов рисуем по одному такому же квадрату.
  4. Дорисовываем полоски для склеивания, с помощью которых грани будут соединяться между собой. Каждые две грани должны соединяться одной полоской.
  5. Куб готов!

После рисования развертка вырезается ножницами и склеивайте ПВА. Клей очень тонким слоем равномерно размазываем кистью по поверхности склеивания. Соединяем поверхности и закрепляем в нужном положении на некоторое время, с помощью скрепки или небольшого груза. Срок схватывания клея где-то 30-40 минут. Ускорить высыхание можно методом нагрева, например, на батарее. После склеиваем следующие грани, закрепляем в нужном положении. И так далее. Так постепенно вы проклеите все грани куба. Используйте небольшие порции клея!

Схемы животных, птиц

Они занимают особое место в жизни человека. Да и природа без зверей была бы неполноценной. Почему бы нам не окунуться в этот прекрасный мир. Вы только посмотрите на птиц, сделав их в технике, вы сумеете привнести кусочек живого и прекрасного в ваш интерьер. А если птица послужит подарком, то для хозяина она принесёт свободу в затруднённые сферы.

Полигональный ворон сложная конструкция требующая навыков.

Лёгкие фигуры из бумаги для детей и их развертки вы можете скачать на сайте ru.dreamstime.com вставив наш реферальный номер  res25459430   чтобы получить скидку на платные подписки и получить доступ к бесплатным.

Голуби мира  украсят любой детсад и станут развивающей поделкой для ребёнка.

Сложные polygonal

Развертки этих чудных черных птиц для декора птиц вы можете скачать на Etsy.

Мудрая сова готова вдохновлять на принятие разумных решений.

Только посмотрите на эту красоту! Настенный попугай станет любимчиком и детей, и взрослых.

Низкополигональный 3д белый голубь.

Панда – отличная деталь минималистичного однотонного интерьера.

Хитрая лиса привнесёт лесной атмосферы в ваше жилище.

Хищная пантера и черная кошка символ грации в вашем дизайне

Креативный дизайн кошачий релакс

А также, замечательный сувенир – сердце. Может быть картонным, железным или пластиковым, какой материал выбрать решать вам.

Разнообразие фигур

На основе пяти приведенных видов, используя умение и фантазию, умельцы легко конструируют множество различных моделей из бумаги. Многогранник может совершенно отличаться от вышеописанных пяти фигур, формируясь одновременно из различных по форме граней, например из квадратов и треугольников. Так получаются архимедовы тела. А если одну или несколько граней пропустить, то получится открытая фигура, просматриваемая как снаружи, так и внутри. Для изготовления объемных моделей используются специальные выкройки, вырезаемые из достаточно плотной, хорошо держащей форму, бумаги. Делают и особенные многогранники из бумаги. Схемы таких изделий предусматривают наличие дополнительных, выступающих модулей. Разберем способы, как сконструировать очень красивую фигуру на примере додекаэдра (фото 3).

Как сделать из бумаги многогранник с двенадцатью вершинами: первый способ

Такую фигуру еще называют звездчатым додекаэдром. Каждая из его вершин в своем основании является правильным пятиугольником. Поэтому делают двумя способами такие многогранники из бумаги. Схемы для изготовления будут несколько отличаться друг от друга. В первом случае это единая деталь (фото 4), в результате сворачивания которой получается готовое изделие. Кроме основных граней, на чертеже присутствуют соединительные части для склеивания, благодаря которым фигура смыкается в единое целое. Для изготовления многогранника вторым способом нужно сделать отдельно несколько шаблонов. Рассмотрим процесс работы подробнее.

3Как сделать из бумаги додекаэдр в стиле оригами?

Работа предстоит интересная, но кропотливая и требующая внимания. Для нее понадобится: бумага для заметок (квадратная) – 30 листов разного цвета.

Процесс пошел:

Сложите один листик пополам, потом обе получившиеся части-створки откройте поочередно, перегнув их к центральному сгибу. В идеале у вас выйдет гармошка похожая на заглавную букву “М”.

Сверните заготовку прямоугольником, положите его перед собой и примните противоположные уголки, чтобы получился ромб.

Сомните деталь по диагонали от нижнего угла до верхнего и выйдет фигура, напоминающая бумажную лодочку.

Смастерите таких “лодочек” 30 штук, по числу ребер додекаэдра. В итоге имеете – по 10 заготовок розового, голубого, желтого цвета.

Меньший кончик голубой детали впихните в шов розовой заготовки так, чтобы складки на обеих деталях совпали.

Теперь кончик желтой полоски воткните в проем голубой, а кончик розовой – зацепите за желтое звено,  первая вершина готова.

Далее – синий кончик заправьте в розовый кармашек, желтую полоску – в синюю и вторая часть верхушки есть.

Для упрощения работы начертите плоскую проекцию многогранника, пометив грани цветными фломастерами, и ориентируйтесь на нее при сборке.

Смонтируйте фигуру, чередуя детали по цвету, затем сожмите ее ладонями, и элементы плотнее встанут на свои места.

Разнообразие фигур

На основе пяти приведенных видов, используя умение и фантазию, умельцы легко конструируют множество различных моделей из бумаги. Многогранник может совершенно отличаться от вышеописанных пяти фигур, формируясь одновременно из различных по форме граней, например из квадратов и треугольников. Так получаются архимедовы тела. А если одну или несколько граней пропустить, то получится открытая фигура, просматриваемая как снаружи, так и внутри. Для изготовления объемных моделей используются специальные выкройки, вырезаемые из достаточно плотной, хорошо держащей форму, бумаги. Делают и особенные многогранники из бумаги. Схемы таких изделий предусматривают наличие дополнительных, выступающих модулей. Разберем способы, как сконструировать очень красивую фигуру на примере додекаэдра (фото 3).

А вот ещё группа красавцев…

На рисунке изображен многогранник, называемый звездчатым октаэдром, получающийся продолжением граней октаэдра. Он был открыт Леонардо да Винчи, затем спустя почти сто лет переоткрыт И. Кеплером и назван им «Stella octangula» — звезда восьмиугольная.

Объединением каких двух многогранников он является? Что является их пересечением?

Ответ: Тетраэдров; октаэдр.

Какие боковые ребра должны быть у правильных пятиугольных пирамид, чтобы при добавлении их к граням додекаэдра с ребром a получился малый звездчатый додекаэдр?

Какие ребра должны быть у правильных треугольных пирамид, чтобы при удалении их из граней икосаэдра с ребром a получился большой додекаэдр?

Какие ребра должны быть у правильных треугольных пирамид, чтобы при добавлении их к граням икосаэдра с ребром a получился большой звездчатый додекаэдр?

Вершинами какого многогранника являются вершины большого звездчатого додекаэдра?

Как из большого додекаэдра можно получить многогранник, изображенный на рисунке?

Ответ: Операцией усечения.

Трехмерные модели однородных многогранников и их звездчатых форм

Здесь можно увидеть трехмерные модели всех известных однородных многогранников: выпуклых Платоновых и Архимедовых тел, тел Кеплера — Пуансо и полуправильных звездчатых многогранников. В таблице представлен полный список многогранников и их некоторые характеристики. Для каждой трехмерной модели предусмотрено несколько вариантов раскраски, имеется также возможность просмотра строения граней и вершин. В специальном разделе галереи можно бегло ознакомиться с обзорными изображениями моделей.

Для каждого однородного многогранника можно породить как в трехмерном калейдоскопе огромное множество звездчатых форм, внешне чрезвычайно привлекательных. Достаточно рассмотреть изображения звезд в галерее, а также примеры звездоформ икосаэдра и кубоктаэдра. Для более сложных многогранников звездчатые формы практически не известны; этот сайт практически впервые дает возможность их увидеть и изучить. Для вас доступны два пути поиска новых многогранников: выбор какой-либо уже представленной на сайте звездчатой формы (а всего их тут более миллиона), либо целенаправленная сборка нового многогранника из отсеков в режиме ручного редактирования звездчатых форм.

Привлекательный внешний вид и огромное разнообразие форм однородных многогранников и их звездчатых форм делают перспективным применение оных как декоративных элементов. Вы можете сохранить на локальный диск любой многогранник для использования в собственных проектах, компьютерном дизайне и графике. Возможен экспорт трехмерных моделей в форматах 3DMAX (*.3ds), VRML (*.vrml), DirectX (*.x) и соответствующих анимированных изображений (*.gif, *.avi, *.swf). Вы можете создавать оригинальные электронные поздравительные открытки с изображениями многогранников. Достаточно выбрать самый красивый многогранник и подписать текст. Вашей открытке будет присвоен уникальный URL (интернет-ссылка), которую вы можете передать заинтересованным лицам. Новинка сезона — создание надписей прямо на гранях многогранника!

Многие великие и умные люди проявляли интерес к многогранникам. Во времена Пифагора учение о многогранниках было сакральным, тайной, доступной только избранным. В философской системе Платона важная роль отводилась правильным многогранникам. Архимед перечислил все полуправильные выпуклые многогранники. Кеплер придумал два звёздчатых правильных многогранника, затем Пуансо нашел ещё два, а Коши доказал: других правильных нет. Коксетер и другие только в середине 20 века перечислили остальные полуправильные невыпуклые многогранники. Ещё позднее удалось доказать, что список однородных многогранников полон. Что касается звездчатых форм сложных многогранников, то они практически никому не известны. Возможно именно Вам посчастливится найти интересно устроенный или особенно красивый многогранник! Тогда в галерее среди достойнейших мужей вы сможете занять свое почетное место.

Таблица — Список всех однородных многогранников

Как сделать из бумаги многогранник с двенадцатью вершинами: первый способ

Такую фигуру еще называют звездчатым додекаэдром. Каждая из его вершин в своем основании является Поэтому делают двумя способами такие многогранники из бумаги. Схемы для изготовления будут несколько отличаться друг от друга. В первом случае это единая деталь (фото 4), в результате сворачивания которой получается готовое изделие. Кроме основных граней, на чертеже присутствуют соединительные части для склеивания, благодаря которым фигура смыкается в единое целое. Для изготовления многогранника вторым способом нужно сделать отдельно несколько шаблонов. Рассмотрим процесс работы подробнее.

Делаем трехмерный сканер из игровой приставки

Разнообразие фигур

На основе пяти приведенных видов, используя умение и фантазию, умельцы легко конструируют множество различных моделей из бумаги. Многогранник может совершенно отличаться от вышеописанных пяти фигур, формируясь одновременно из различных по форме граней, например из квадратов и треугольников. Так получаются архимедовы тела. А если одну или несколько граней пропустить, то получится открытая фигура, просматриваемая как снаружи, так и внутри. Для изготовления объемных моделей используются специальные выкройки, вырезаемые из достаточно плотной, хорошо держащей форму, бумаги. Делают и особенные многогранники из бумаги. Схемы таких изделий предусматривают наличие дополнительных, выступающих модулей. Разберем способы, как сконструировать очень красивую фигуру на примере додекаэдра (фото 3).

Как сделать параллелепипед из бумаги?

Параллелепипед – многогранник, у которого шесть граней и каждая из них параллелограмм.

Рисование развертки:

  1. Выбираем размеры параллелепипеда и величины углов.
  2. Чертим параллелограмм — основание. С каждой стороне дорисовываем боковые стороны — параллелограммы. От любой из боковой стороны дорисовываем второе основание. Добавляем полоски для склеивания. Параллелепипед может быть прямоугольным, если стороны прямоугольники. Если параллелепипед не прямоугольный, то создать развертку немного сложнее. Для каждого параллелограмма нужно выдержать требуемые углы.
  3. Вырезаем развертку и склеиваем.
  4. Параллелепипед готов!

Как сделать конус из бумаги?

Конус – тело, полученное объединением всех лучей, исходящих из одной точки (вершины конуса) и проходящих через плоскую поверхность.

Рисование развертки:

  1. Рисуем циркулем окружность
  2. Вырезаем сектор (часть круга, ограниченная дугой окружности и двумя радиусами, проведенными к концам этой дуги) из этой окружности. Чем больший сектор вы вырежете, тем острее будет конец конуса.
  3. Склеиваем боковую поверхность конуса.
  4. Измеряем диаметр основания конуса. С помощью циркуля рисуем окружность на листе бумаге требуемого диаметра. Дорисовываем треугольнички для склеивания основания с боковой поверхностью. Вырезаем.
  5. Приклеиваем основание к боковой поверхности.
  6. Конус готов!

Как сделать многогранник из бумаги: второй способ

Изготовьте два главных шаблона (фото 5):

— Первый. Нарисуйте на листе окружность и поделите ее поперек на две части. Одна будет основой для выкройки, дугу второй сразу сотрите для удобства. Поделите деталь на пять равных частей и ограничьте все радиусы поперечными отрезками. В результате получатся соединенные вместе пять одинаковых равнобедренных треугольников. Изобразите рядом примыкающую к среднему отрезку точно такую же полуокружность, только в зеркальном отражении. Полученная деталь при сворачивании выглядит как два конуса. Изготовьте таких аналогичных шаблонов всего шесть штук. Для их склеивания используется вторая деталь, которая будет помещаться вовнутрь.

— Второй. Этот шаблон – пятиконечная звезда. Выполните одинаковые двенадцать заготовок. Формируя многогранник, каждую из звезд с подогнутыми вверх концами помещают внутрь конусообразных деталей и приклеивают к граням.

Полный сбор фигуры получается путем соединения двойных блоков дополнительными отрезками бумаги, заводя их вовнутрь. Моделируя изделия, довольно проблематично сделать их разными по размеру. Готовые модели многогранников из бумаги не так-то просто увеличить. Для этого недостаточно просто сделать припуски по всем внешним границам. Нужно масштабировать отдельно каждую из граней. Только так возможно получить увеличенную копию первоначальной модели. Используя второй способ изготовления многогранника, сделать это намного проще, так как будет достаточно увеличить первоначальные заготовки, по которым уже выполняется нужное количество отдельных деталей.

История

Пожалуй, самый древний предмет в форме додекаэдра был найден в северной Италии, около Падуи, в конце XIX века, он датируется 500 г. до н. э. и предположительно использовался этрусками в качестве игральной кости.

Додекаэдр рассматривали в своих сочинениях древнегреческие учёные. Платон сопоставлял с правильными многогранниками различные классические стихии. О додекаэдре Платон писал, что «…его бог определил для Вселенной и прибегнул к нему в качестве образца». Евклид в предложении 17 книги XIII «Начал» строит додекаэдр на рёбрах куба. Папп Александрийский в «Математическом собрании» занимается построением додекаэдра, вписанного в данную сферу, попутно доказывая, что вершины додекаэдра лежат в параллельных плоскостях.

На территории нескольких европейских стран найдено множество предметов, называемых римскими додекаэдрами, относящихся ко II—III вв. н. э., назначение которых не совсем понятно.

История фигур

Древняя математическая наука уходит своими корнями в далекое прошлое, во времена процветания Древнего Рима и Греции. Тогда было принято связывать технические аспекты с философскими. Поэтому, согласно учению Платона (один из древнегреческих мыслителей), каждый из многогранников, состоящих из определенного количества одинаковых плоскостей, символизирует одну стихию. Фигуры из треугольников — октаэдр, икосаэдр и тетраэдр — ассоциируются с воздухом, водой и огнем соответственно и могут преобразовываться друг в друга благодаря однотипности граней, каждая из которых имеет три вершины. Землю же символизирует гексаэдр из квадратов. А додекаэдр, благодаря особенным пятиугольным граням, выполняет декоративную роль и является прототипом гармонии и мира.

Также известно, что один из греческих математиков, Евклид, доказал в своем учении «Начала» неповторимость упомянутых платоновых тел и их свойство «вписываться» в сферу (фото 2). Сделан показанный из бумаги многогранник путем сворачивания сомкнутых между собой двадцати равнобедренных треугольников. Схема наглядно демонстрирует выкройку для изготовления фигуры. Рассмотрим подробнее все этапы работы по созданию икосаэдра.

Правильные многогранники

Все фигуры отличаются друг от друга различным количеством граней и их формой. Кроме этого, некоторые модели могут быть сложены из цельного листа (как описано в примере изготовления икосаэдра), другие – только путем сбора из нескольких модулей. Классическими считаются правильные многогранники. Из бумаги их делают, придерживаясь главного правила симметрии – наличия в шаблоне полностью одинаковых граней. Существует пять основных видов таких фигур. В таблице приведены сведения об их названиях, количестве и формах граней:

Название

Кол-во граней

Форма каждой грани

тетраэдр

4

треугольник

гексаэдр

6

квадрат

октаэдр

8

треугольник

додекаэдр

12

пятиугольник

икосаэдр

20

треугольник

Особенности работы с геометрическими фигурами в разном возрасте

Поделки из фигур доступны для занятий с детьми с самого младшего возраста.

Для малышей 2-4 лет задание не должно включать в себя больше 5 деталей

В противном случае ребенок быстро устает, путается, а внимание его рассеивается. Для изготовления поделки малышу необходимо приготовить готовые элементы поделки из цветной бумаги и предложить основу с готовым контуром

Или показать, последовательность выполнения работы.
Дети в возрасте 4-5 лет могут вырезать из бумаги простые детали самостоятельно, но под присмотром взрослых. Для работы ребенку необходимы ножницы с закругленными концами. Дети такого возраста способны сами выполнить поделки средней сложности.
Учащиеся младших классов справляются самостоятельно с достаточно сложными заданиями.

Для того, чтобы заинтересовать ребенка изготовлением поделки из геометрических фигур, можно предложить ему интерактивную игру на основе сказки “Мышонок и карандаш”. Затею эту можно осуществить в домашних условиях на занятиях в детском саду. Необходимо заранее приготовить элементы, из которых состоит кошка: круги, овалы и треугольники.

Увлекательная игра поможет сделать творческий процесс интереснее для очень активных детей.

Плоские геометрические фигуры из бумаги – Строим замок

В этом упражнении вы можете скачать плоские геометрические фигуры из бумаги и построить из них замок, то есть выложить их на столе таким образом, чтобы получился заданный силуэт замка. Для начала скачайте во вложениях бланки с заданием и распечатайте на принтере. Затем вырежьте геометрические фигуры (квадрат, трапеция, полукруг и треугольник), которые даны к этому заданию. Все карточки с заданиями даны с увеличением уровня сложности (от 1 до 6 задания).

После этого подробно объесните ребенку инструкцию к выполнению упражнения.

“Строители, прежде чем строить какое-либо здание, смотрят сначала на его чертеж или схему, в которых показано каким оно должно быть. Такие чертежи бывают разными. Вот например, один из них”, – взрослый показывает одну или две игровых схемы замка с нашего задания. – “Тебе нужно мысленно представить из каких частей состоит каждый замок, руководствуясь теми фигурами, которые можно использовать для строительства.” – взрослый показывает все геометрические фигуры, которые заранее вырезаны из цветного картона.

Также не нужно допускать, чтобы ребенок накладывал вырезанные геометрические фигуры из бумаги на силуэт замка, так как при этом он не будет развивать наглядно-образное мышление. Старайтесь, чтобы всю основную работу ребенок проводил в уме, а не методом подбора.

Карточка 1

Карточка 2

Карточка 3

Карточка 4

Карточка 5

Карточка 6

Геометрические фигуры для вырезания:

Объемные геометрические фигуры из бумаги – Вырезаем и клеим:

  • Итак, в первом листе мы выложили следующие геометрические фигуры: куб (фигура, поверхность которого состоит из 6 квадратов), трехгранная пирамида (основание пирамиды и 3 грани), четырехгранная пирамида (основание и 4 грани), ромб (фигура, визуально состоящая из двух пирамид, имеющих общее основание).
  • Во втором листе вы найдете развертки таких геометрических фигур из бумаги: шестигранник (фигура, состоящая из шести граней), цилиндр (состоящий из свернутого прямоугольника и двух окружностей-оснований) и конус.

Лист 1

Лист 2

После того, как дети, при помощи взрослых, склеят все геометрические фигуры из бумаги, можно продолжить занятие, задавая детям вопросы. Например: “Покажи мне пирамиду. Сколько у нее сторон? Где ее основание? Чем эта пирамида (показываете трехгранную) отличается от этой (четырехгранной)? Покажи мне цилиндр. Какие предметы он тебе напоминает? Покажи конус. На что он похож? Покажи куб. Сколько у него сторон? Из какой геометрической фигуры состоят его стороны?” – и так далее.

В зависимости от возраста ребенка, можно использовать в занятии различные обучающие материалы.

Например, что такое пирамида:

Какие бывают пирамиды. (Пусть ребенок покажет из них те, которые он склеил)

Что такое куб:

Что такое конус и цилиндр. На что они похожи:

Простая модель из бумаги для детей

Для развития у малыша логики и мелкой моторики, специалисты решили создавать фигуры, но с меньшим уровнем сложности. Ребёнок будет доволен, если вы предложите ему сборку забавных фигурок.

Моделирование из бумаги и картона в примерах.

Разнообразие фигур

На основе пяти приведенных видов, используя умение и фантазию, умельцы легко конструируют множество различных моделей из бумаги. Многогранник может совершенно отличаться от вышеописанных пяти фигур, формируясь одновременно из различных по форме граней, например из квадратов и треугольников. Так получаются архимедовы тела. А если одну или несколько граней пропустить, то получится открытая фигура, просматриваемая как снаружи, так и внутри. Для изготовления объемных моделей используются специальные выкройки, вырезаемые из достаточно плотной, хорошо держащей форму, бумаги. Делают и особенные многогранники из бумаги. Схемы таких изделий предусматривают наличие дополнительных, выступающих модулей. Разберем способы, как сконструировать очень красивую фигуру на примере додекаэдра (фото 3).

Как сделать многогранник из бумаги: второй способ

Изготовьте два главных шаблона (фото 5):

— Первый. Нарисуйте на листе окружность и поделите ее поперек на две части. Одна будет основой для выкройки, дугу второй сразу сотрите для удобства. Поделите деталь на пять равных частей и ограничьте все радиусы поперечными отрезками. В результате получатся соединенные вместе пять одинаковых равнобедренных треугольников. Изобразите рядом примыкающую к среднему отрезку точно такую же полуокружность, только в зеркальном отражении. Полученная деталь при сворачивании выглядит как два конуса. Изготовьте таких аналогичных шаблонов всего шесть штук. Для их склеивания используется вторая деталь, которая будет помещаться вовнутрь.

— Второй. Этот шаблон – пятиконечная звезда. Выполните одинаковые двенадцать заготовок. Формируя многогранник, каждую из звезд с подогнутыми вверх концами помещают внутрь конусообразных деталей и приклеивают к граням.

Полный сбор фигуры получается путем соединения двойных блоков дополнительными отрезками бумаги, заводя их вовнутрь. Моделируя изделия, довольно проблематично сделать их разными по размеру. Готовые модели многогранников из бумаги не так-то просто увеличить. Для этого недостаточно просто сделать припуски по всем внешним границам. Нужно масштабировать отдельно каждую из граней. Только так возможно получить увеличенную копию первоначальной модели. Используя второй способ изготовления многогранника, сделать это намного проще, так как будет достаточно увеличить первоначальные заготовки, по которым уже выполняется нужное количество отдельных деталей.

Как сделать объемные геометрические фигуры

Дети познают мир в процессе игры и творчества. Трехмерные фигуры, выполненные своими руками, помогут познакомиться с удивительной наукой — геометрией.

Примеры трафаретов и шаблонов можно скачать из Интернета и распечатать. Затем все фигуры вырезают и склеивают. Дети старшего возраста могут самостоятельно нарисовать развертку нужной фигуры, малышам помогают родители,.

Геометрические объекты делают из бумаги (белой или цветной), картона. Из последнего материала они получаются плотными и прочными.

https://youtube.com/watch?v=vQmAzZijA2M

https://youtube.com/watch?v=dNq-0OwTFs4

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации