Андрей Смирнов
Время чтения: ~19 мин.
Просмотров: 0

Как сделать блоки питания шуруповерта из энергосберегающих лампочек?

Как сделать блок питания из энергосберегающей лампы

Может показаться, что это дело так называемых радиолюбителей, опытных мастеров работы со схемами, электроприборами.

Но на деле оказывается, что заниматься «оживлением» старой техники может практически любой человек, сталкивающийся в быту с электрическими устройствами. Достаточно работать по плану и иметь схему устройства перед глазами. Мы подготовили наглядную электросхему и поэтапный план работы над блоком из ЭСЛ.

Разбираем лампу

Будьте осторожны, когда разбираете ЭСЛ. Повредив целостность колбы, можно выпустить вредные пары ртути, которые быстро распространяются вокруг. Рекомендуем аккуратно, не спеша поддевать маленькой отверткой в месте шва.

Когда вам открылась схема, соединенная с колбой четырьмя выводами питания, отрежьте их и внимательно рассмотрите состояние элементов. Внешне можно понять, что они вышли из строя, по подгоревшим местам, вздутиям; могут отпаяться концы соединений. После внешнего осмотра необходимо прозвонить электрическую цепь. По опыту радиолюбителей в ЭСЛ часто портятся конденсаторы и резисторы.

Запасные элементы берутся из схем других энергосберегающих ламп, отложенных вами для будущего блока питания. После того, как из нескольких схем соберете одну, можно двигаться дальше.

Вам нужно решить, блок питания какой мощности вы хотели бы собрать. Если мощность блока равна мощности энергосберегающей лампочки, то больших изменений не потребуется; если же захотите увеличить мощность блока питания, то нужно добавить вторичную обмотку, выложенную медным проводником.

Подготовительные работы

Итак, мы уже удалили контакты, идущие до колбы. Красным на схеме изображен удаленный нами узел ЭСЛ. На оставшиеся концы в схеме садим перемычку. Для повышения выдаваемой мощности нужно добавить к дросселю (на схеме L5) дополнительную (вторичную) обмотку. Появится резерв мощности блока питания за счет нее.

Помимо этого, добавляем новые детали в схему:

  • конденсаторы (на схеме C9, С10)
  • мост диодный (VD14-VD17)

Нужное количество витков для вторичной обмотки определяется в несколько этапов:

  1. Укладывается временная обмотка около десяти витков и соединяется с нагрузочным сопротивлением, имеющим характеристики в пределах 30-ти ватт и более, и собственно самим сопротивлением от 5 до 6 Ом;
  2. После подключения питания измеряется напряжение на нагрузочном сопротивлении;
  3. Полученные цифры напряжения делятся на число витков – так узнается, какое напряжение приходит на один виток;
  4. Расчет нужного количества витков для питания постоянной обмотки и подбор диаметра проводника для вторичной обмотки.

Диаметр вторичной обмотки советуем выбрать 0,5 мм.

Количество нужных витков:

X = Uвых (достигаемое напряжение БП) /Uвит (напряжение одного витка)

Кардинальные преобразования

Однако надёжней сделать импульсный блок питания с нуля, поискав трансформатор с нужными характеристиками в старой электронике. Заводские трансформаторы будут гораздо долговечней самоделки. И не нужно к тому же высчитывать количество витков по формуле, достаточно присоединить паяльником концы обмотки трансформатора к схеме.

Если вы хотите сильно увеличить мощность блока питания, в несколько раз, то нужно выпаять старый дроссель и присоединить новый (на схеме ниже обозначен как TV2). Подсоединяем к блоку два диода, составляющих выходной выпрямитель (на схеме VD14, VD15), заменяем диоды на входном выпрямителе с большей мощностью (на схеме RO) и ставим конденсатор с большей емкостью (на схеме CO). Подбирать конденсатор необходимо в пропорциях 1 Ватт выходной мощности = 1 микрофарад. На схеме изображено сто микрофарад на сто ватт.

Опробовать блок питания можно на лампочке аналогичной мощности. Главное следить за тем, чтобы температура трансформатора нашего блока не превышала 60ºС, а транзисторов 80ºС. Измеряется температура ртутными либо спиртовыми термометрами. Также есть так называемые заводские термопары и термосопротивления. Опытный радиолюбитель всегда имеет такие приспособления под рукой.

Советуем посмотреть видео-инструкцию:

Кардинальные преобразования

В идеале для вторичной обмотки нужно брать такой же тип провода, как и в исходном заводском варианте. Но часто «окно» магнитоприёмника дросселя настолько узкое, что не получается даже намотать один полноценный слой. А ещё ведь обязательно нужно учитывать толщину прокладки между первичной и вторичной обмоткой. В результате кардинально изменить мощности, выдаваемые схемой лампы, без внесения изменений в состав компонентов платы не получится. Кроме того, насколько бы аккуратно вы не выполняли намотку, сделать её так качественно, как в моделях, произведённых заводским способом, вам всё равно не удастся. И в данном случае проще тогда собрать импульсный блок с нуля, чем переделывать «добро», добытое бесплатно из лампочки. Поэтому рациональнее поискать на разборках старой компьютерной или телерадиотехники готовый трансформатор с искомыми параметрами. Он выглядит намного компактнее, чем «самоделка». Да и запас прочности его не идёт ни в какое сравнение.

Трансформатор

И Вам не придётся ломать голову над расчётами количества витков для получения желаемой мощности. Припаял к схеме – и готово! Поэтому если мощность блока питания нужна бóльшая, скажем порядка 100 Вт, тогда придётся действовать радикально. И только имеющимися в лампах запчастями тут не обойтись. Так если Вы хотите ещё больше повысить мощность блока питания, необходимо выпаять и удалить с платы лампочки родной дроссель (обозначен на схеме ниже как L5).

Подробная схема ИБП

Подключенный трансформатор

Затем на участке между прежним местом дросселя и реактивной средней точкой (на схеме этот отрезок находится между разделительными конденсаторами С4 и С6) подсоединяется новый мощный трансформатор (обозначен как TV2). К нему, при необходимости, подсоединяется выходной выпрямитель, состоящих из пары соединительных диодов (они обозначены на схеме как VD14 и VD15). Не помешает попутно заменить на более мощные и диоды на входном выпрямителе (на схеме это VD1-VD4). Не забудьте также установить более ёмкий конденсатор (показан на схеме как С0). Подбирать его нужно из расчёта1 микрофарад на 1 Вт выходной мощности. В нашем случае был взят конденсатор на 100 mF. В результате мы получаем вполне дееспособный импульсный блок питания из энергосберегающей лампы. Собранная схема будет выглядеть примерно так.

Схемы

При подключении  люминесцентных ламп используется особая пуско-регулирующая техника – ПРА. Различают 2 вида ПРА : электронная – ЭПРА (электронный балласт) и электромагнитная – ЭМПРА (стартер и дроссель).

Схема подключения с применением электромагнитный балласта или  ЭмПРА (дросель и стартер)

Более распространённая схема подключения люминесцентной лампы – с использованием ЭМПРА. Это стартерная схема включения.

Принцип работы:  при подключении электропитания в стартере появляется разряд и

замыкаются накоротко биметаллические электроды, после этого ток в цепи электродов и стартера ограничивается лишь внутренним сопротивлением дросселя, в следствии чего же возрастает практически втрое больше  рабочий ток в лампе и мгновенно нагреваются электроды люминесцентной лампы.

Одновременно с этим остывают биметаллические контакты стартера и цепь размыкается.

В то же время разрыва дроссель, благодаря самоиндукции создает запускающий высоковольтный импульс (до 1 кВольта), который приводит к разряду в газовой среде и загорается лампа. После чего напряжение на ней станет равняться половине от сетевого, которого станет недостаточно  для повторного замыкания электродов стартера.

Когда лампа светит стартер не будет участвовать в схеме работы и его контакты будут и останутся разомкнуты.

 Основные недостатки

В сравнении со схемой с электронным балластом на 10-15 % больший расход электричества.

 Долгий пуск  не менее 1 до 3  секунд (зависимость от износа лампы)

 Неработоспособность при низких температурах окружающей среды. К примеру, зимой в неотапливаемом гараже.

Стробоскопический результат мигания лампы, что плохо оказывает влияние на зрение, при чем  детали станков, вращающихся синхронно с частотой сети-  кажутся неподвижными.

Звук от гудения пластинок дросселя, растущий со временем.

Схема включения с двумя лампами но одним дросселем. Следует заметить что индуктивность дросселя должна быть достаточной по мощности етих двух ламп.

Следует заметить что в последовательной схеме включения  двох ламп применяются стартеры на 127 Вольт,  они не будут работать в одноламповой схеме, для которой понадобятся стартеры на 220 Вольт

Ета схема где, как видите, нет ни стартера ни дроселя, можна применить если у ламп перегорели нити накала. В таком случае зажечь ЛДС можно при помощи повышающего трансформатора Т1 и конденсатора С1 который ограничит ток протекающий через лампу от сети 220вольт.

Ета схема подойдет все для тех же ламп у которых перегорели нити накала, но сдесь уже ненада повышающего трансформатора что явно упрощает конструкцию устройства

А вот такая схема с применением диодного выпрямительного моста устраняет ее мерцание лампы с частотой сети, которое снановится очень заметным при ее старении.

или сложнее

Если в вашем светильнике вышел с строя стартер или мигает постоянно лампа (вместе с стартером если присмотрется под корпус стартера) и под рукой нечем заменить, зажечь лампу можна и без него — достаточно на 1-2 сек

закоротить контакты стартера или поставить кнопку S2 (осторожно опасное напряжение). тот же случай но уже для лампы с перегоревшей нитей накала

тот же случай но уже для лампы с перегоревшей нитей накала

Схема подключения с применением электронного балласта или ЭПРА

Электронный Пускорегулирующий Аппарат (ЭПРА) в отличии от электромагнитного  подает на лампы  напряжение не сетевой частоты, а высокочастотное от 25 до 133 кГц. А это полностью исключает вероятность появления приметного для глаз мерцания ламп. В ЭПРА используется автогенераторная схема, включающая трансформатор и выходной каскад на транзисторах.

Основные преимущества схем с ЭПРА

  Повышение срока эксплуатации люминесцентных ламп, благодаря особому режиму работы и пуска. 

  В сравнении с ПРА до 20% экономия электричества.

  Отсутствие в ходе работы шума и мерцания. 

  Отсутствует в схеме  стартер, который часто ломается.

  Особые модели выпускаются с возможностью диммирования  либо регулировки яркости свечения.

Схема подключения конкретного электронного балласта изображена на каждом конкретном устройстве и не составляет особой проблемы в подключении 

Внутри такого электронного «дросселя» как правило схема на подобие етой…

Что такое аварийное освещение

Во избежание настолько неприятного исхода на подобных объектах принято использовать аварийное освещение в дополнение к основному. Если по каким-то причинам главные источники света выходят из строя, включается аварийное освещение, благодаря которому можно организовать эвакуацию сотрудников и других лиц с объекта или завершить необходимые производственные процессы. Подобные устройства могут работать несколько часов подряд без источника питания.

Существует два вида аварийного освещения – информационное и запасное. Первое представлено осветительными приборами, при помощи которых указываются пути эвакуации для людей, освещаются особо опасные зоны, а также источниками света для недопущения возникновения паники. Второй тип освещения необходим для корректного завершения производственных процессов в случае непредвиденного отключения электроэнергии.

Светодиодные лампы аварийного освещения

Самым приемлемым вариантом на сегодняшний день являются светодиодные аварийные источники света. Современный рынок предлагает огромное количество подобных устройств, поэтому проблем с поиском не возникнет. Данные осветительные устройства стали настолько распространенными из-за своей экономичности и безопасности.

Конструкция аварийных светильников несколько отличается от устройства обычного источника света. В данных устройствах присутствует блок аккумуляторных батарей, а также специальный драйвер для запитки светодиодных ламп при аварийной ситуации от данных батарей. Во время первого подключения к электрической сети следует дать немного времени на подзарядку батарей в аварийном светильнике. Это время колеблется от пары часов до двух суток, но после полной зарядки устройства смогут работать около трех часов без электропитания. Этого времени хватит с лихвой, поскольку согласно нормам требуется не более 1 часа работы аварийного источника света для проведения эвакуации и завершения необходимых процессов.

Схема обустройства аварийного светодиодного освещения

Аккумуляторные батареи могут быть двух типов – литиевые и никель-металлгидридные. В разных моделях осветительных устройств используются различные батареи. В обоих случаях аккумуляторы прослужат довольно долго и обеспечат многоразовое включение аварийного освещения, однако они нуждаются в профилактических действиях. Перед началом эксплуатации осветительного устройства, а также ежегодно, необходимо тестировать его работоспособность и полностью сажать батарею.

Профилактические действия должны проходить в следующем порядке:

  • первым делом потребуется отключить устройство от электросети для его перевода в аварийный режим работы;
  • затем нужно оставить осветительное устройство включенным на несколько часов, чтобы полностью разрядить аккумуляторную батарею;
  • после этого светильники нужно снова подключить к источнику питания и дать им зарядиться,если в процессе аккумуляторная батарея не выдержала необходимое количество времени, то она подлежит замене.

Из всего вышеперечисленного становится ясно, что подобное оптическое оборудование может функционировать в двух режимах – обыкновенном, как простая лампа, и аварийном. Существуют некоторые модели осветительных приборов, которые излучают свет различной интенсивности. К примеру, в обыкновенном режиме мощность лампочки составляет 20 Ватт, а при возникновении аварийной ситуации мощность снижается до 5 Ватт.

Конструкция светильника аварийного освещения

Независимо от конкретной модели устройства аварийные источники света включают в себя набор обычной электроники, как в простых лампах, аккумуляторную батарею, драйвер питания лампочек от батареи, а также драйвер заряда. Последний нужен для того, чтобы батарея заряжалась автоматически во время подключения к электросети, а также для своевременного включения аварийного осветительного оборудования в случае непредвиденных сбоев в работе электросети.

Как после перелома руки снять отек

Чаще всего при переломе руки происходит повреждение лучевой кости или предплечья, отек которых усиливается при наличии на руке украшений или часов. Потому при травме и на протяжении всего периода восстановления конечности, не рекомендуется их носить

Также важно отказаться от одежды, сдавливающей руки на любом участке

Общий принцип работы элемента

По сути, балласт для люминесцентных ламп представляет собой дроссель. Он регулирует силу подачи тока, ограничивая или разделяя разночастотные электрические сигналы. Ликвидирует пульсации постоянного тока. Происходит нагрев катодов люминесцентных ламп.

Далее, на них производится подача необходимого количества напряжения, которое активирует работу осветительного прибора. Напряжение корректируется с помощью особого регулятора, который впаян в инверторную схему. Именно он отлаживает диапазон напряжений. За счет вышеперечисленных особенностей работы балласта мерцание в источнике света полностью исключается.

В схему встроен и стартер. Его функции – трансляция напряжения и зажигание. При включении лампы, на микросхеме балласта происходит снижение силы тока. Данная особенность позволяет выстроить необходимый режим работы осветительного прибора.

Сегодня на рынке широко представлены такие виды балластных устройств, как:

  • электромагнитные;
  • электронные;
  • балласты для компактных ламп.

Представленные категории отмечены надёжной работой и обеспечивают длительное функционирование и простоту эксплуатации всех люминесцентных ламп. Все эти приборы имеют идентичный принцип действия, однако отличаются по некоторым пунктам.

Электромагнитные

Данные балласты применимы для ламп, подключенных к электросети при помощи стартера. Первично возникающий разряд интенсивно разогревает и замыкает биметаллические электродные элементы. Происходит резкое увеличение рабочего тока.

Электромагнитный балласт легко узнать по внешнему виду. Конструкция более массивная, по сравнению с электронным прототипом.

При выходе из строя стартера, в схеме электромагнитного балласта, возникает фальстарт. При поступлении питания лампа начинает мигать, впоследствии идёт ровная подача электроэнергии. Эта особенность значительно снижает рабочий ресурс источника освещения.

Плюсы Минусы
Высококлассный уровень надежности, доказанный практикой и временем. Долгий запуск — на первом этапе эксплуатации запуск осуществляется за 2-3 секунды и до 8 секунд к моменту завершения срока службы.
Простота конструкции. Повышенный расход электроэнергии.
Удобство эксплуатации модуля. Мерцание лампы с частотой 50 Гц (эффект стробирования). Негативно влияет на человека, который длительно находится в помещении с подобным видом освещения.
Доступная цена для потребителей. Слышен гул работы дросселя.
Количество фирм производителей. Значительный вес конструкции и громоздкость.

Электронные

Сегодня применяются магнитные и электронные балластники, которые состоят в первом случае из микросхемы, транзисторов, динисторов и диодов, а во втором – из металлических пластин и медного провода. Посредством стартера лампы запускаются, причем в качестве единой функции этого элемента с балластником в одной схеме организовано явление в электронном варианте детали.

  • малый вес и компактность;
  • плавное быстрое включение;
  • в отличие от электромагнитных конструкций, которым для работы требуется сеть 50 Гц, высокочастотные магнитные аналоги функционируют без шумов от вибрации и мерцания;
  • снижены потери на нагревание;
  • коэффициенты мощности в электронных схемах достигают 0,95;
  • продленный срок эксплуатации и безопасность применения обеспечиваются несколькими видами защиты.
Достоинства Недостатки
Автоматическая настройка балласта под различные виды ламп. Более высокая стоимость, по сравнению с электромагнитными моделями.
Моментальное включение осветительного прибора, без дополнительной нагрузки на устройство.
Экономия потребления электроэнергии до 30%.
Исключен нагрев электронного модуля.
Ровная световая подача и отсутствие шумовых эффектов в процессе освещения.
Увеличение срока службы люминесцентных ламп.
Дополнительная защита гарантирует увеличение степени пожаробезопасности.
Снижение рисков в процессе эксплуатации.
Ровная подача светопотока исключает быструю утомляемость.
Отсутствие негативных функций в условиях пониженных температур.
Компактность и легкость конструкции.

Для компактных люминесцентных ламп

Компактные типы ламп дневного света представлены приборами, аналогичным лампой накаливания типов Е27, Е40 и Е14. В таких схемах электронные балласты встраиваются вовнутрь патрона. В данной конструкции исключён ремонт в случае поломки. Дешевле и практичнее будет приобрести новую лампу.

Потенциальные ошибки

Не рекомендуется использовать как выходной выпрямитель стандартный диодный мост на низких частотах. Особенно нежелательно это делать, если источник бесперебойного питания отличается высокой мощностью.

Если используется трансформатор с возрастанием тока нагрузки, повысится и ток в транзисторных базах. Эмпирически установлено, что после того, как показатель нагрузки доходит до 75 Вт, в магнитопроводе наступает насыщение. Результатом этого является снижение качества транзисторов и их чрезмерный нагрев. Чтобы не допустить такого развития событий, рекомендуется самостоятельно обмотать трансформатор, используя большее сечение сердечника. Также допускается складывание вместе двух колец. Еще один вариант состоит в использовании большего диаметра проводника.

Базовый трансформатор, выступающий в качестве промежуточного звена, можно удалить из схемы. С этой целью токовый трансформатор присоединяют к выделенной обмотке силового трансформатора. Делается это с использованием высокомощного резистора на основе схемы обратной коммуникации. Минусом такого подхода является постоянное функционирование трансформатора тока в условиях насыщения.

Нельзя забывать о высокой отзывчивости диодов к повышенным показателям обратного напряжения и тока. К примеру, если поставить в схему на 12 вольт 6-вольтовый диод, данный элемент быстро придет в негодность.

Не следует менять транзисторы и диоды на низкокачественные электронные компоненты. Рабочие характеристики элементной базы российского производства оставляют желать лучшего, и результатом замены станет снижение функциональности источника бесперебойного питания.

Используем драйвер энергосберегающей лампы

Более надежна схема, когда используется драйвер из энергосберегающей лампы с минимальными переделками. В качестве примера на рисунке показана переделка энергосберегающей лампы мощностью 20Вт для питания мощного светодиода с током потребления 0.9А.

Переделка светодиодной лампы для питания светодиодов

Переделка электронного балласта для светодиодных ламп в данном примере минимальна. Большая часть элементов в схеме оставлена от драйвера старой лампы. Изменениям подвергся дроссель L3 и добавлен выпрямительный мост. В старой схеме между правым выводом конденсатора С10 и катодом диода D5 была включена люминесцентная лампа.

Теперь конденсатор и диод соединены напрямую, а дроссель используется в качестве трансформатора.

Переделка дросселя заключается в намотке вторичной обмотки, с которой и будет сниматься напряжение для питания светодиода.

Не разбирая дроссель, на него нужно намотать 20 витков эмалированного провода диаметром 0.4мм. При включении напряжение холостого хода вновь выполненной обмотки должно составлять около 9.5–9.7В. После подключения моста и светодиода, амперметр, включенный в разрыв питания LED элемента, должен показывать около 830–850мА. Большее или меньшее значение требует коррекции количества витков трансформатора.

Диоды 1N4007 или аналогичные, можно использовать от другой неисправной лампы. Диоды в экономках используются с большим запасом по току и напряжению, поэтому выходят из строя крайне редко.

Схемы светодиодных ламп

Выравнивание переменного пота и создание необходимой мощности и сопротивления для светодиодных светильников решается двумя способами. Схемы условно можно разделить на:

  • с диодным мостом;
  • резисторные, с четным количеством светодиодных элементов.

Каждый вариант имеет простые схемы и свои преимущества.

Схема преобразователя с диодным мостом

Диодный мост состоит из 4 диодов, направленных в разные стороны. Его задача превратить синусоидальный переменный ток в пульсирующий. Каждая полуволна проходит через два элемента, и минус меняет свою полярность.

В схеме, для светодиодной лампы, перед мостом со стороны источника переменного тока на плюс подсоединяется конденсатор С10,47х250 v. Перед минусовой клеммой ставится сопротивление на 100 Ом. Позади моста, параллельно ему, устанавливается еще один конденсатор – С25х400 v, который сглаживает перепад напряжений. Сделать своими руками такую схему легко, достаточно иметь навыки работы с паяльником.

Светодиодный элемент

Плата со светодиодными элементами применяется стандартная, от вышедшего из строя светильника. Необходимо проверить перед сборкой, чтобы все детали были рабочими. Для этого используется аккумулятор на 12 V, можно от автомобиля. Нерабочие элементы можно заменить, распаяв аккуратно контакты и поставив новые. Внимательно следите за расположением ножек анода и катода. Они соединяются последовательно.

При замене 2 – 3 деталей, вы просто припаиваете их в соответствии с положением, которое занимали вышедшие из строя элементы.

Собирая новый светодиодный светильник своими руками, нужно помнить простое правило. Лампы соединяются по 10 последовательно, затем эти цепи подключаются параллельно. На практике это выглядит так:

  1. 10 светодиодов ставите в ряд и спаиваете ножки анод одной с катодом второй. Получается 9 соединений и по одному свободному хвостику по краям.
  2. Все цепочки припаиваете к проводам. К одному катодные концы, к другому анодные.

В текстах часто используется словесное обозначение контактов, на схемах значки. Напоминание для начинающих электриков:

  • катод, положительный — «+», присоединяется к минусу;
  • Анод отрицательный – «-», присоединяется к плюсу.

При сборке схем своими руками, следите, чтобы спаянные концы не касались других. Это приведет к замыканию и сгорит вся схема, которую вы сумели сделать.

Схемы для более мягкого свечения

Чтобы светодиодная лампа не раздражала глаза миганием, в схему сборки надо добавить несколько деталей. В целом преобразователь тока состоит из:

  • диодный мост;
  • конденсаторы на 400 нФ и 10 мкФ;
  • резисторы на 100 и 230 Ом.

Для защиты от скачков напряжения, вначале ставится резистор на 100 Ом, и за ним впаивается конденсатор в 400 нФ. В предыдущем варианте они установлены на разных концах входа. За конденсатором после диодного моста устанавливается еще один резистор 230 Ом. За ним идет последовательная цепочка светодиодов (+).

Конструкции пускорегулирующих модулей

Конструкции промышленных и бытовых люминесцентных лампочек, как правило, оснащаются модулями ЭПРА. Аббревиатура читается вполне доходчиво – электронный пускорегулирующий аппарат.

Электромагнитное устройство старого образца

Рассматривая конструкцию этого устройства из серии электромагнитной классики, сразу можно отметить явный недостаток – громоздкость модуля.

Правда, конструкторы всегда стремились минимизировать габаритные размеры ЭМПРА. В какой-то степени это удалось, судя по современным модификациям уже в виде ЭПРА.

Набор функциональных элементов электромагнитного пускорегулирующего устройства. Его составными частями, как видно, являются всего два компонента – дроссель (так называемый балласт) и стартер (схема формирования разряда)

Громоздкость электромагнитной конструкции обусловлена внедрением в схему крупногабаритного дросселя – обязательного элемента, предназначенного сглаживать сетевое напряжение и выступать в качестве балласта.

Помимо дросселя, в состав схемы ЭМПРА входят стартеры (один или два). Очевидна зависимость качества их работы и долговечности лампы, т. к. дефект стартера вызывает фальшивый старт, что означает перегрузку по току на нитях накала.

Так выглядит один из конструктивных вариантов стартера пускорегулирующего электромагнитного модуля люминесцентных ламп. Существует масса других конструкций, где отмечается разница в размерах, материалах корпуса

Наряду с ненадежностью стартерного пуска, люминесцентные лампы страдают от эффекта стробирования. Проявляется он в виде мерцания с определенной частотой, близкой к 50 Гц.

Наконец, пускорегулирующий аппарат обеспечивает значительные энергетические потери, то есть в целом снижает КПД ламп люминесцентного типа.

Усовершенствование конструкции до ЭПРА

Начиная с 1990 годов, схемы люминесцентных ламп все чаще стали дополнять усовершенствованной конструкцией пускорегулирующего модуля.

Основу модернизированного модуля составили полупроводниковые электронные элементы. Соответственно, уменьшились габариты устройства, а качество работы отмечается на более высоком уровне.

Результат модификации электромагнитных регуляторов – электронные полупроводниковые устройства запуска и регулировки свечения люминесцентных ламп. С технической точки зрения, отличаются более высокими эксплуатационными показателями

Внедрение полупроводниковых ЭПРА привело практически к полному исключению недостатков, какие присутствовали в схемах аппаратов устаревшего формата.

Электронные модули показывают качественную стабильную работу и увеличивают долговечность люминесцентных светильников.

Более высокий КПД, плавное регулирование яркости, повышенный коэффициент мощности – все это преимущественные показатели новых модулей ЭПРА.

Устройство и принцип работы

Выпускаемые отечественной промышленностью энергосберегающие лампы, а также широко распространенные китайские их аналоги имеют схожую электронную схему (ЭПРА), работающую по принципу импульсного преобразования. Такое устройство энергосберегающей лампы обеспечивает ей следующие очевидные преимущества:

  • Входящая в энергосберегающие лампы электронная начинка гарантирует высокую нагрузочную способность изделия, работающего в режиме длительного (непрерывного) свечения;
  • Эффективность использования сетевого напряжения (КПД) в этом случае существенно повышается;
  • Встроенная схема энергосберегающей лампы позволяет получить компактное и лёгкое изделие (за счёт отсутствия громоздкого и тяжёлого трансформатора).

Дополнительная информация. Рассматриваемая энергосберегающая импульсная схема питания имеет только один небольшой недостаток, состоящий в её низкой надёжности и частом выходе из строя.

Суть работы устройства ЭПРА (так называемого балласта) достаточно проста и состоит в следующем:

  • Сначала напряжение 220 Вольт преобразуется в выпрямительном модуле в постоянный потенциал примерно той же величины;
  • Затем в электронной схеме под воздействием выпрямленного напряжения формируется последовательность высоковольтных импульсов частотой от 20 до 40 кГц (точное значение зависит от конкретной модели изделия);
  • На завершающем этапе преобразования электрические импульсы выпрямляются (сглаживаются) выходным дросселем, а получившееся после этого высокое напряжение подаётся непосредственно на осветительную лампу.

Для лучшего понимания принципа, согласно которому работают энергосберегающие лампы, потребуется более тщательное рассмотрение используемой в них электронной схемы.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации