Андрей Смирнов
Время чтения: ~20 мин.
Просмотров: 0

Послепродажная подготовка kugoo s3 36v 2018, тэстинг и прочий хэндмэйдинг

Железо, Fe

Латинское название Ferrum, химический символ Fe. Элемент находится в 4 периоде, VIII В-группе ПСХЭ. Порядковый номер 26. Относительная атомная масса — 56. Строение электронных оболочек характеризует формула 1s2 2s22p6 3s23p63d6 4s2 (в невозбужденном состоянии).

Значения валентности и степени окисления в соединениях: II(+), III(+) VI(+); +2, +3, +6 (соответственно). Самое устойчивое состояние — при степени окисления +3. Железо в степени окисления +6 — сильный окислитель.

Железо получают в промышленности двумя основными способами. Пирометаллургический заключается в восстановлении алюминием или водородом при высоких температурах. Схема алюмотермии: Fe3O4 + 4H2 → 3Fe + 4H2O. Подвергают растворы солей, например хлорид. На катоде происходит восстановление по схеме: Fe+3+ 3ē → Fe↓. На аноде собирают газообразный хлор. Сплавы железа — чугун и сталь — производят в мартеновских печах, получают электрометаллургическим способом.

Железо — твердый металл серебристо-черного цвета с металлическим блеском (рис. 5). Взаимодействует с кислородом при сильном нагревании. Вытесняет водород из растворов кислот. В воде окисляется с образованием оксидов и гидроксидов. Эту смесь в быту называют ржавчиной (рис. 6).

Рис. 5. Железо

Таблица 4

Свойства соединений

Классы веществ

Названия и формулы

Свойства

Оксиды

Оксид железа (II) FeO.Основной.

Оксид железа (III) Fe2O3.

Амфотерный, с преобладанием основных свойств.

Гидроксиды

Гидроксид железа (II) Fe(ОН)2.

Основной.

Гидроксид железа (III) Fe(ОН)3.

Амфотерный, с преобладанием основных свойств.

Рис. 6. Ржавчина на железном изделии

Сплавы железа применяется во многих отраслях промышленности, строительстве, в транспортной отрасли. Сам металл менее прочный, ржавеет. Раствор сульфата железа используют в сельском хозяйстве для борьбы с болезнями и для подкормок растений.

Смотри также:

  • Закономерности изменения свойств элементов и их соединений по периодам и группам
  • Общая характеристика металлов IА–IIIА групп
  • Общая характеристика неметаллов IVА–VIIА групп

Цинк, Zn

Латинское название Zincum, химический символ Zn. Элемент 4 периода, расположен во II группе, В-подгруппе. Порядковый номер 30. Масса — 65,37. Строение электронных оболочек: 1s2 2s22p6 3s23p63d10 4s2 (в основном состоянии). Валентность и степень окисления: II(+) и +2 (соответственно).

Способы получения в промышленности:

  • Восстановление углеродом при нагревании: ZnO+ C→ CO↑ + Zn.
  • Гидрометаллургия: ZnO + H2SO4 → ZnSO4+ H2O; ZnSO4+ Fe → FeSO4+ Zn↓.
  • Электролиз: цинк восстанавливается на катоде Zn2+ + 2H+ + 4ē → Zn↓ + H2.

Цинк — металл серебристо-серого цвета (рис. 3). Твердый, проводит тепло и электричество. Окисляется кислородом при нагревании. Не взаимодействует с бором, углеродом, кремнием, азотом. В воде не растворяется, но при сильном нагревании реагирует с водяным паром с образованием оксида цинка и выделением водорода. Реагирует с кислотами, кроме азотной, вытесняет водород. Вытесняет металлы, расположенные в ряду активности правее, из растворов их солей. 

Рис. 3. Цинк

Таблица 2

Характеристика соединений

Классы веществ

Названия и формулы

Свойства

Оксиды

Оксид цинка, ZnO

Амфотерный.

Гидроксиды

Гидроксид цинка Zn(ОН)2

Амфотерный.

Цинк находит применение как защитный материал для предотвращения ржавчины (оцинковки) изделий из стали, железа. Металл используется в строительстве, производстве бытовой техники и для других целей.

Этот корпус лёгкий, но космически крепкий. Сделан из особого сплава

Учитывая характеристики и целевую аудиторию, премиальный ноутбук обязан одним видом показывать, на что способен.

Глубокий серо-синий ExpertBook B9400 мягко переливается и искрится при ярком свете благодаря одному из самых редких покрытий в своём форм-факторе – керамическому.

Композит сделан так, что издалека он выглядит строго и нейтрально, и только вблизи видно блестящий слой

Но это не тот белый гладкий материал, который вы могли видеть в смартфонах или умных часах, а матовая смесь минералов. Её нарастили на каркас устройства, в основе которого магниево-литиевый сплав.

Его редко используют в ноутбуках, потому что он сложнее в производстве и дороже аналога из алюминия с магнием. Однако на выходе он не такой плотный и более лёгкий примерно на 16%, что идеально в премиальном сегменте.

Такие технологии применили для того, чтобы ноутбук толщиной 14,9 мм и весом всего 880 грамм случайно не сгибался при транспортировке, как это иногда бывает.

Сделал пару попыток «прогнуть» панели – всё держится крепко, ничего не выворачивается или прогибается, как это происходит с пластиковыми ноутбуками.

Основное и возбужденное состояние атома

Электронные формулы, которые мы составляли до этого, соответствуют основному энергетическому состоянию атома. Это наиболее выгодное энергетически состояние атома.

Однако, чтобы образовывать химические связи, атому в большинстве ситуаций необходимо наличие неспаренных (одиночных) электронов.  А химические связи энергетически очень для атома выгодны. Следовательно, чем больше в атоме неспаренных электронов  — тем больше связей он может образовать, и, как следствие, перейдёт в более выгодное энергетическое состояние.

Поэтому при наличии свободных энергетических орбиталей на данном уровне спаренные пары  электронов могут распариваться, и один из электронов спаренной пары может переходить на вакантную орбиталь. Таким образом число неспаренных электронов увеличивается, и атом может образовать больше химических связей, что очень выгодно с точки зрения энергии. Такое состояние атома называют возбуждённым и обозначают звёздочкой.

Например, в основном состоянии бор имеет следующую конфигурацию энергетического уровня:

+5B 1s22s22p1      1s    2s     2p 

На втором уровне (внешнем) одна спаренная электронная пара, один одиночный электрон и пара свободных (вакантных) орбиталей. Следовательно, есть возможность для перехода электрона из пары на вакантную орбиталь, получаем возбуждённое состояние атома бора (обозначается звёздочкой):

+5B* 1s22s12p2      1s    2s     2p

Попробуйте самостоятельно составить электронную формулу, соответствующую возбуждённому состоянию атомов. Не забываем проверять себя по ответам!

15. Углерода

16. Бериллия

17. Кислорода

Электронные формулы ионов

Атомы могут отдавать и принимать электроны. Отдавая или принимая электроны, они превращаются в ионы.

Ионы — это заряженные частицы. Избыточный заряд обозначается индексом в правом верхнем углу.

Если атом отдаёт электроны, то общий заряд образовавшейся частицы будет положительный (вспомним, что число протонов в атоме равно числу электронов, а при отдаче электронов число протонов будет больше числа электронов). Положительно заряженные ионы — это катионы. Например: катион натрия образуется так:

+11Na 1s22s22p63s1      -1е =+11Na+ 1s22s22p63s

Если атом принимает электроны, то приобретает отрицательный заряд. Отрицательно заряженные частицы — это анионы. Например, анион хлора обраузется так:

+17Cl 1s22s22p63s23p5   +1e = +17Cl— 1s22s22p63s23p6

Таким образом, электронные формулы ионов можно получить добавив или отняв электроны у атома

Обратите внимание, при образовании катионов электроны уходят с внешнего энергетического уровня. При образовании анионов электроны приходят на внешний энергетический уровень

Попробуйте составить самостоятельно электронный формулы ионов. Не забывайте проверять себя по ключам!

18. Ион Са2+

19. Ион S2-

20. Ион Ni2+

В некоторых случаях совершенно разные атомы образуют ионы с одинаковой электронной конфигурацией. Частицы с одинаковой электронной конфигурацией и одинаковым числом электронов называют изоэлектронными частицами.

Например, ионы Na+ и F—.

Электронная формула катиона натрия: Na+   1s22s22p6, всего 10 электронов.

Электронная формула аниона фтора: F—   1s22s22p6, всего 10 электронов.

Таким образом, ионы Na+ и F— — изоэлектронные. Также они изоэлектронны атому аргона.

Ответы на вопросы:

1. У изотопов одного химического элемента массовое число всегда разное, т.к. массовое число складывается из числа протонов и нейтронов. А у изотопов различается число нейтронов.

2. У изотопов одного элемента число протонов всегда одинаковое, т.к. число протонов характеризует химический элемент.

3. Массовое число изотопа брома-81 равно 81. Атомный номер = заряд ядра брома = число протонов в ядре = 35. Вычитаем из массового числа число протонов, получаем 81-35=46 нейтронов.

4. Массовое число изотопа хлора равно 37. Атомный номер, заряд ядра и число протонов в ядре равно 17. Получаем число нейтронов = 37-17 =20.

5. Электронная формула азота:

+7N 1s22s22p3      1s    2s     2p 

6. Электронная формула кислорода:

+8О 1s22s22p4 1s  2s  2p 

7. Электронная формула фтора:

8. Электронная формула магния:

+12Mg 1s22s22p63s2      1s    2s     2p      3s

9. Электронная формула алюминия:

+13Al 1s22s22p63s23p1     1s    2s   2p    3s   3p 

10. Электронная формула кремния:

+14Si 1s22s22p63s23p2     1s    2s   2p    3s   3p

11. Электронная формула фосфора:

+15P 1s22s22p63s23p3     1s    2s   2p    3s   3p

12. Электронная формула серы:

+16S 1s22s22p63s23p4     1s    2s   2p    3s   3p

13. Электронная формула хлора:

14. Электронная формула аргона:

+18Ar 1s22s22p63s23p6     1s    2s   2p    3s   3p

15. Электронная формула углерода в возбуждённом состоянии:

+6C* 1s22s12p3   1s    2s     2p

16. Электронная формула бериллия в возбуждённом состоянии:

+4Be 1s22s12p1      1s    2s    2p 

17. Электронная формула кислорода в возбуждённом энергетическом состоянии соответствует формуле кислорода в основном энергетическом состоянии, т.к. нет условий для перехода электрона — отсутствуют вакантные энергетические орбитали.

18. Электронная формула иона кальция Са2+: +20Ca2+   1s22s22p63s23p6 

19. Электронная формула аниона серы S2-: +16S2- 1s22s22p63s23p6

20. Электронная формула катиона никеля Ni2+: +28Ni2+  1s22s22p63s23p63d84s

Обратите внимание! Атомы отдают электроны всегда сначала с внешнего энергетического уровня. Поэтому никель отдаёт электроны сначала с внешнего 4s-подуровня

Contents

Как подзарядить батарейки в домашних условиях

О том, как зарядить батарейку, чтобы она снова работала, думают многие пользователи бытовой техники и электронных гаджетов. Зарядке подлежат не все элементы питания, поэтому нужно смотреть на их маркировку.

Статус ноутбука подтвердили в каждом нюансе

Очевидно, что на ExpertBook B9400 за 139 990 рублей с процессором Core i5-11355G7, 16 ГБ ОЗУ, 1 ТБ хранилища и Windows 10 Pro на борту не будут смотреть люди, которые ищут максимальную выгоду.

Ноутбук из нашего обзора сделан для того, кто не хочет долго разбираться с железом. Кому нужно, чтобы всё летало, загружалось и звучало на высшем уровне. И чтобы при этом помещалось в самую аккуратную сумку.

При этом сумма за базовую модель ещё сформирована, сейчас ASUS ждёт поставок к дистрибуторам.

А вот за топовую модель с Core i7-1165G7, 32 ГБ ОЗУ, 4 ТБ хранилища и Windows 10 Pro попросят 199 990 рублей.

Так что ASUS не зря отправила устройство в область «экспертных».

Особый композит минералов в покрытии, графитовые пластины для охлаждения, двойной SSD и технологии на базе искусственного интеллекта делают ExpertBook B9400 одним из самых тюнингованных премиальных ультрабуков в мире.

Такой поможет всегда оставаться на связи благодаря синхронизации со смартфоном, заработает с почти любым актуальным проводом и подойдёт для решения самых надёжных задач.

Потому что безопасность, производительность и качество слились в целое с ExpertBook B9400.


iPhones.ru

Необычные материалы на благо прогресса.

Павел Телешевский

У меня 4 новых года: обычный, свой, WWDC и сентябрьская презентация Apple. Последний — самый ожидаемый, и ни капли за это не стыдно.
Instagram/Telegram: @tinelray

PlasmaSheePYT’s playground

By PlasmaSheePYT (Did i just beat it with 5 slots?)

By PlasmaSheePYT (Not even 4 slots also +post level plants)

By PlasmaSheePYT (Primal Peashooter vs Excavator Zombie)

By PlasmaSheePYT (Pepper-pult)

By PlasmaSheePYT (If he isn’t a S-Plant he will be probably one of the best normal plants)

By PlasmaSheePYT (Rebeat the level with Kernel T1 again isn’t wrong,right?)

By PlasmaSheePYT (Kernel-Pult T2)

By PlasmaSheePYT (Kernel-Pult T3)

By PlasmaSheePYT (Ho…How did i beat with Laser Bean, i mean it’s slow and yea)

By PlasmaSheePYT (No S-Plants)

By PlasmaSheePYT (My first beaten)

By PlasmaSheePYT (Cabbage T2 without Stallia)

By PlasmaSheePYT (i used PMM instead of Potato Mine but i do this for fun)

By PlasmaSheePYT (5 slots again)

By PlasmaSheePYT (Me chilling at this level)

By PlasmaSheePYT (6 slots without S-Plants)

By PlasmaSheePYT (Citron also CreeperBoss1532 challenged me)

By PlasmaSheePYT (Melon-Pult T1)

By PlasmaSheePYT (Peashooter T2)

By PlasmaSheePYT (Snow Pea T1)

By PlasmaSheePYT (Winter Melon T1)

By PlasmaSheePYT (T2 run in 1.6)

Add a photo to this gallery

Страницы

  • Главная страница
  • ОСНОВЫ ОБЩЕЙ ХИМИИ
  • 1.1 Важнейшие классы неорганических веществ
  • 2.1 Вещества. Атомы
  • 2.2 Размеры атомов
  • 2.3 Молекулы. Химические формулы
  • 2.4 Простые и сложные вещества
  • 2.5 Валентность элементов
  • 2.6 Моль. Молярная масса
  • 2.7 Закон Авогадро
  • 2.8 Закон сохранения массы веществ
  • 2.9 Вывод химических формул
  • 3.1 Строение атома. Химическая связь
  • 3.2 Строение атома
  • 3.4 Строение электронной оболочки атома
  • 3.5 Периодическая система химических элементов
  • 3.6 Зависимость свойств элементов
  • 3.7 Химическая связь и строение вещества
  • 3.8 Гибридизация орбиталей
  • 3.9 Донорно-акцепторный механизм образования
  • 3.10 Степени окисления элементов
  • 4.1 Классификация химических реакций
  • 4.2 Тепловые эффекты реакций
  • 4.3 Скорость химических реакций
  • 4.4 Необратимые и обратимые реакции
  • 4.5 Общая классификация химических реакций
  • НЕОРГАНИЧЕСКАЯ ХИМИЯ
  • 5.1 Растворы. Электролитическая диссоциация
  • 5.2 Количественная характеристика состава растворов
  • 5.3 Электролитическая диссоциация
  • 5.4 Диссоциация кислот, оснований и солей
  • 5.5 Диссоциация воды
  • 5.6 Реакции обмена в водных растворах электролитов
  • 5.7 Гидролиз солей
  • 6.1 Важнейшие классы неорганических веществ
  • 6.2 Кислоты, их свойства и получение
  • 6.3 Амфотерные гидроксиды
  • 6.4 Соли, их свойства и получение
  • 6.5 Генетическая связь между важнейшими классами
  • 6.6 Понятие о двойных солях
  • 7.1 Металлы и их соединения
  • 7.2 Электролиз
  • 7.3 Общая характеристика металлов
  • 7.4 Металлы главных подгрупп I и II групп
  • 7.5 Алюминий
  • 7.6 Железо
  • 7.7 Хром
  • 7.8 Важнейшие соединения марганца и меди
  • 8.1 Неметаллы и их неорганические соединения
  • 8.2 Водород, его получение
  • 8.3 Галогены. Хлор
  • 8.4 Халькогены. Кислород
  • 8.5 Сера и ее важнейшие соединения
  • 8.6 Азот. Аммиак. Соли аммония
  • 8.7 Оксиды азота. Азотная кислота
  • 8.8 Фосфор и его соединения
  • 8.9 Углерод и его важнейшие соединения
  • 8.10 Кремний и его важнейшие соединения
  • ОРГАНИЧЕСКАЯ ХИМИЯ
  • 9.1 Основные положения органической химии. Углеводороды
  • 9.2 Электронные эффекты заместителей в органических соединениях
  • 9.3 Предельные углеводороды (алканы)
  • 9.3.1 Насыщенные УВ. Метан
  • 9.4 Понятие о циклоалканах
  • 9.5 Непредельные углеводороды
  • 9.6 Диеновые углеводороды (алкадиены)
  • 9.7 Алкины
  • 9.8 Ароматические углеводороды
  • 9.9 Природные источники углеводородов
  • 10.1 Кислородсодержащие органические соединения
  • 10.2 Фенолы
  • 10.3 Альдегиды
  • 10.4 Карбоновые кислоты
  • 10.5 Сложные эфиры. Жиры
  • 10.6 Понятие о поверхностно-активных веществах
  • 10.7 Углеводы
  • 11.1 Амины. Аминокислоты
  • 11.2 Белки
  • 11.3 Понятие о гетероциклических соединениях
  • 11.4 Нуклеиновые кислоты
  • 12.1 Высокомолекулярные соединения
  • 12.2 Синтетические волокна

Орбитальное (побочное), магнитное квантовые числа и форма орбитали

Конкретное место в атоме, «комната», в которой почти постоянно находится электрон, называется орбиталью. Орбитали напоминают облака разной формы из электронов. Подуровни и форму орбиталей обозначают латинскими буквами: s, p, d, f.

Эту схему предложил Бор, она помогает разобраться в строении атома, но не отражает реальной картины. Наши представления об атоме расходятся с реальностью. И выглядит это примерно так:

На первом энергетическом уровне есть только сферическая s-орбиталь. На втором энергетическом уровне появляются три p-орбитали. Их форма напоминает гантель или восьмёрку. На третьем энергетическом уровне уже есть пять d-орбиталей, которые как бы состоят из нескольких лепестков. На четвёртом уровне возникают семь f-орбиталей.

Форму орбиталей обозначают орбитальным (побочным) квантовым числом l (эль). Оно на единицу меньше главного квантового числа, то есть l = n – 1. Тогда получается, что орбитальное число единственной s-орбитали первого энергетического уровня равно нулю. Орбиталь p имеет число 1, орбиталь d – 2, f – 3.

Но как же располагаются орбитали внутри одного подуровня? Дело в том, что движущийся электрон создаёт магнитное поле, в котором по осям x, y, z ориентируются орбитали.

Сферическая s-орбиталь не имеет ориентации в пространстве. Три p-орбитали располагаются в трёх различных проекциях, d – в пяти, f – в семи проекциях. Другими словами, сколько орбиталей одного типа, столько и проекций.

Магнитное квантовое число ml показывает, какие проекции есть у орбитали. Количество таких вариантов определяется по формуле 2l+1.

Для s-орбитали l = 0 и ml = 0, так и получается, что сфера принимает только одно положение в пространстве.

Для p-орбитали l = 1, ml принимает три значения -l, 0, +l. При l = 3, магнитный момент принимает семь (2l + 1 = 7) значений: -3, -2, -1, 0, +1, +2, +3.

Орбитально квантовое число IМагнитное квантовое число IIЧисло орбиталей 2l + 1
0 (s)1
1 (p)-1, 0, 13
2 (d)-2, -1, 0, 1, 25
3 (f)-3, -2, -1, 0, 1, 2, 37

Как заполняются орбитали?

Электроны заполняют орбитали в соответствии с 3 принципами (правилами).

  1. Принцип минимума энергии. Электрон «стремится» занять положени в атоме с наименьшей энергией. То есть электроны сначала «заселяют» низкоэнергетические орбитали. Рейтинг желаемых орбиталей выглядит так: 1s22s22p63s23p64s23d104p65s24d105р66s25d14f14…  Как будто электроны сначала выбирают малозаселённые этажи с небольшим количеством квартир.
  2. Принцип Паули. В атоме не может быть двух электронов с одинаковыми свойствами. То есть на каждой орбитали может находиться либо один неспаренный электрон, либо два электрона с разными спинами. Это похоже на дорогу с двусторонним движением: либо едет один автомобиль, либо два, но навстречу друг другу.
  3. Правило Хунда. Наиболее устойчивое (основное) состояние атома достигается тогда, когда на одном уровне находится как можно больше неспаренных электронов. Можно провести такую аналогию: электроны сначала селятся по одному, а потом ищут себе пару.

Смотри также:

  • Электронная конфигурация атомов и ионов. Основное и возбужденное состояние атомов
  • Закономерности изменения свойств элементов и их соединений по периодам и группам

Медь, Cu

Латинское название — Cuprum, символ — Cu. Относительная атомная масса — 63,5. Медь находится в 4 периоде, I B-группе ПСХЭ. Порядковый номер — 29.

Распределение электронов по уровням и подуровням характеризует следующая электронная формула: 1s2 2s22p6 3s23p63d10 4s1. В возбужденном состоянии на 4s уровень и подуровень «проскакивает» один d-электрон. Атом получает более устойчивую конфигурацию электронных оболочек.

Типичные значения валентностей и степеней окисления в соединениях: I(+), II(+), 0, +1, +2 соответственно. Заряд катиона 2+.

Способ получения меди в лаборатории — восстановление из оксида с помощью водорода при нагревании.

Промышленное получение:

  • Восстановление водородом. Схема процесса: Cu+2O + H2 → Cu + H2O.
  • Металлотермия. Происходит реакция обмена CuO + H2SO4 →CuSO4 + H2O. далее идет вытеснение меди железом CuSO4 + Fe → FeSO4 + Cu↓.
  • Электролиз водного раствора сульфата меди. На катоде происходит восстановление Cu2+ + 2ē → Cu; на аноде — окисление 2H2O – 4ē → 4H+ + O2↑. 

Описание металла — простого вещества

  • золотисто-красный цвет (рис. 2);
  • металлический блеск;
  • пластичен, легко вытягивается в проволоку и прокатывается в листы;
  • тепло- и электропроводность высокие.

Рис. 2. Медь

Химические свойства:

  • Медь в ряду активности находится после водорода, это инертный металл.
  • Не взаимодействует с водой.
  • Не реагирует при обычных условиях с водородом, углеродом, кремнием, азотом, с растворами соляной и серной кислот, растворами щелочей.
  • Взаимодействует с концентрированными растворами серной и азотной кислот.

Таблица 1

Важнейшие соединения меди

Класс веществ

Название соединения

Характер свойств

Оксиды

Оксид меди (I) Cu2OОсновной.

Оксид меди (II) CuO

Амфотерный (преобладают основные свойства).

Гидроксиды

Гидроксид меди (I) СuOH

Основной.

Гидроксид меди (II) Cu(ОН)2Амфотерный (преобладают основные свойства).

Применение меди, ее соединений и сплавов:

  • изготовление конденсаторов, механизмов для часов, ювелирных изделий с применением латуни (сплава);
  • использование чистого металла и сплавов в машиностроении;
  • использование оксидов в производстве стекла, эмалей;
  • производство дистилляторов воды;
  • выпуск проволоки, кабеля.

Кристаллогидрат сульфата меди (медный купорос) — средство для борьбы с грибковыми инфекциями растений. Применяется в смеси с гашеной известью для получения более сильной бордоской жидкости. Медь используется в производстве микроудобрений. Элемент необходим растениям и животным для нормального роста и развития.

Тесты с контролем тока с помощью мультиметра

Спаял паука) Подключил  тестер в разрыв питания, посмотрел ток в режиме заряда, и величину тока в режиме включён.Потребление включенного самоката, фара + задний фонарик 150 мА.

Разгон — до 15А.

При торможении, когда рекуперация отключена (п. 22), ток оставался отрицательным (расход) и сразу к значению 150мА (ток потребления включенного самоката с включенной фарой)

Курок тормоза имеет два рабочих положения:

1 среднее — слабое затормаживание

2 макимально возможное затормаживание (закоротка фаз через ключи)

Если в пункте 22 активировать рекуперацию, то при среднем нажатии на курок ток становится отрицательным, (в батарею) до 7А, при торможении с максималки. Ток снижается со снижением скорости, и рекуперация прекращается, при скорости приблизительно 7-10км/час. Если дожать курок до упора, то режим рекуперации отключается и торможение осуществляется через закоротку фаз.

По субъективным ощущениям, при торможении со средней и с высокой скорости замедление лучше в рекуперативном режиме, чем просто «курок в упор». Иногда, при низких скоростях (7-10км/час) рекуперация не включается.

Всё устраивает в самокате, кроме слабого тормоза. Есть предложения по модернизации??

Перевод чисел из одной системы счисления в другую

Наиболее простым способом перевода числа с одной системы счисления в другую, является перевод числа сначала в десятичную систему счисления, а затем, полученного результата в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

Для перевода числа из любой системы счисления в десятичную достаточно пронумеровать его разряды, начиная с нулевого (разряд слева от десятичной точки) аналогично примерам 1 или 2. Найдём сумму произведений цифр числа на основание системы счисления в степени позиции этой цифры:

1. Перевести число в десятичную систему счисления.Решение: = = = Ответ: =

2. Перевести число в десятичную систему счисления.Решение: = = = Ответ: =

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления целую и дробную части числа нужно переводить отдельно.

Перевод целой части числа из десятичной системы счисления в другую систему счисления

Целая часть переводится из десятичной системы счисления в другую систему счисления с помощью последовательного деления целой части числа на основание системы счисления до получения целого остатка, меньшего основания системы счисления. Результатом перевода будет являться запись из остатков, начиная с последнего.

3. Перевести число в восьмиричную систему счисления.Решение: 273 / 8 = 34 и остаток 1, 34 / 8 = 4 и остаток 2, 4 меньше 8, поэтому вычисления завершены. Запись из остатков будет иметь следующий вид: 421Проверка: = = = , результат совпал. Значит перевод выполнен правильно.Ответ: =

Рассмотрим перевод правильных десятичных дробей в различные системы счисления.

Перевод дробной части числа из десятичной системы счисления в другую систему счисления

Напомним, правильной десятичной дробью называется вещественное число с нулевой целой частью. Чтобы перевести такое число в систему счисления с основанием N нужно последовательно умножать число на N до тех пор, пока дробная часть не обнулится или же не будет получено требуемое количество разрядов. Если при умножении получается число с целой частью, отличное от нуля, то целая часть дальше не учитывается, так как последовательно заносится в результат.

4. Перевести число в двоичную систему счисления.Решение: (0 — целая часть, которая станет первой цифрой результата), (0 — вторая цифра результата), (1 — третья цифра результата, а так как дробная часть равна нулю, то перевод завершён).Ответ: =

Преимущества ручной работы

Этот отличный материал для создания колебалок на щуку, жереха, окуня и других хищников.

А также стоит отметить:

  1. Доступность сырья. Ложки различных размеров есть в каждом доме.
  2. Экономия денежных средств. Чтобы сделать блесну самому нужно купить всего несколько деталей, которые в общей сложности обойдутся не больше 50 рублей, а то и меньше.
  3. Неограниченный срок службы. Ложки изготавливаются из нержавеющего металла.
  4. Возможность реализации различных идей. Для декорирования изделия можно использовать краски, лак, цветные нитки.

Но главное – это уловистость блесны. Ведь можно практически бесплатно получить набор рабочих приманок на хищника.

В охлаждение добавили графитовые пластины

Горячий воздух идёт из тыльной части устройства

Чтобы качественно рассеивать тепло в таком тонком и узком корпусе, нужны необычные решения.

Например, в ExpertBook B9400 теплопроводную трубку разместили под тем же углом, под которым кулер выдувает воздух.

А для ещё лучшего распределения жара по обе стороны от компонентов расставили листы из графита. Они достаточно теплопроводны, чтобы помочь всей системе эффективнее охлаждаться.

Заодно в программе-ассистенте MyASUS (о нём ниже) можно включить полный продув CPU. Он резко охлаждает процессор высокими оборотами вентилятора и тем самым помогает избежать троттлинга – бесконтрольного снижения частоты.

Преимущества применения частного преобразователя на микроконтроллере Arduino

Регулировка оборотами однофазного асинхронного мотора с помощью микроконтроллера обеспечивает значительную экономию затрат на электроэнергию при частичной нагрузке. Поскольку потребление электричества и скорость вращения вала мотора прямо пропорциональные величины, экономия может быть значительной при правильном применении. Для примера рассмотрим систему, в которой используется насос в установке очистки сточных вод.

Небольшой частной фирме необходимо прокачивать яму лишь перед большим дождём или при увеличенном использовании канализации (праздничные выходные) и не нужны полные возможности насоса. Если насос будет постоянно работать, компания будет тратить значительное количество электроэнергии за работу насоса на полную мощность.Суть заключается ещё в том, чтобы в зависимости от давления в системе канализации и водоотведения, у насоса плавно набиралисьобороты и поддерживалось необходимое давление в системес регулированием частоты вращения движка.

Со школьной скамьи известно простое уравнение:

Мощность = крутящий момент х угловая скорость.

Для конкретной конфигурации мотора мощность – величина постоянная. Так как угловая скорость увеличивается, крутящий момент уменьшается. Таким образом, крутящий момент больше на низких оборотах, и наоборот.

За счет использования Arduino, таким образом, можно замедлить мотор насоса до 50%, и все равно прокачивать большой объем воды, и образом сэкономить более 50% от необходимого электричества. Экономия будет просто астрономической при частичном или регулярном использовании преобразователя.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации